Question

In: Statistics and Probability

The Iris data set is a well-known data set among data mining analysts. Please provide some...

The Iris data set is a well-known data set among data mining analysts. Please provide some background of this data set and the information contained in it.

Solutions

Expert Solution

This is the multivariate data set of iris flower and introduced by the British statistician and biologist Ronald Fisher.

The data set consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor). Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.

To know other features of data set, i will use R

Code ---

class(iris)
iris
length(iris)
summary(iris)

Output ---

> class(iris)
[1] "data.frame"
> iris
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5.0 3.4 1.5 0.2
9 4.4 2.9 1.4 0.2
10 4.9 3.1 1.5 0.1
11 5.4 3.7 1.5 0.2
12 4.8 3.4 1.6 0.2
13 4.8 3.0 1.4 0.1
14 4.3 3.0 1.1 0.1
15 5.8 4.0 1.2 0.2
16 5.7 4.4 1.5 0.4
17 5.4 3.9 1.3 0.4
18 5.1 3.5 1.4 0.3
19 5.7 3.8 1.7 0.3
20 5.1 3.8 1.5 0.3
21 5.4 3.4 1.7 0.2
22 5.1 3.7 1.5 0.4
23 4.6 3.6 1.0 0.2
24 5.1 3.3 1.7 0.5
25 4.8 3.4 1.9 0.2
26 5.0 3.0 1.6 0.2
27 5.0 3.4 1.6 0.4
28 5.2 3.5 1.5 0.2
29 5.2 3.4 1.4 0.2
30 4.7 3.2 1.6 0.2
31 4.8 3.1 1.6 0.2
32 5.4 3.4 1.5 0.4
33 5.2 4.1 1.5 0.1
34 5.5 4.2 1.4 0.2
35 4.9 3.1 1.5 0.2
36 5.0 3.2 1.2 0.2
37 5.5 3.5 1.3 0.2
38 4.9 3.6 1.4 0.1
39 4.4 3.0 1.3 0.2
40 5.1 3.4 1.5 0.2
41 5.0 3.5 1.3 0.3
42 4.5 2.3 1.3 0.3
43 4.4 3.2 1.3 0.2
44 5.0 3.5 1.6 0.6
45 5.1 3.8 1.9 0.4
46 4.8 3.0 1.4 0.3
47 5.1 3.8 1.6 0.2
48 4.6 3.2 1.4 0.2
49 5.3 3.7 1.5 0.2
50 5.0 3.3 1.4 0.2
51 7.0 3.2 4.7 1.4
52 6.4 3.2 4.5 1.5
53 6.9 3.1 4.9 1.5
54 5.5 2.3 4.0 1.3
55 6.5 2.8 4.6 1.5
56 5.7 2.8 4.5 1.3
57 6.3 3.3 4.7 1.6
58 4.9 2.4 3.3 1.0
59 6.6 2.9 4.6 1.3
60 5.2 2.7 3.9 1.4
61 5.0 2.0 3.5 1.0
62 5.9 3.0 4.2 1.5
63 6.0 2.2 4.0 1.0
64 6.1 2.9 4.7 1.4
65 5.6 2.9 3.6 1.3
66 6.7 3.1 4.4 1.4
67 5.6 3.0 4.5 1.5
68 5.8 2.7 4.1 1.0
69 6.2 2.2 4.5 1.5
70 5.6 2.5 3.9 1.1
71 5.9 3.2 4.8 1.8
72 6.1 2.8 4.0 1.3
73 6.3 2.5 4.9 1.5
74 6.1 2.8 4.7 1.2
75 6.4 2.9 4.3 1.3
76 6.6 3.0 4.4 1.4
77 6.8 2.8 4.8 1.4
78 6.7 3.0 5.0 1.7
79 6.0 2.9 4.5 1.5
80 5.7 2.6 3.5 1.0
81 5.5 2.4 3.8 1.1
82 5.5 2.4 3.7 1.0
83 5.8 2.7 3.9 1.2
84 6.0 2.7 5.1 1.6
85 5.4 3.0 4.5 1.5
86 6.0 3.4 4.5 1.6
87 6.7 3.1 4.7 1.5
88 6.3 2.3 4.4 1.3
89 5.6 3.0 4.1 1.3
90 5.5 2.5 4.0 1.3
91 5.5 2.6 4.4 1.2
92 6.1 3.0 4.6 1.4
93 5.8 2.6 4.0 1.2
94 5.0 2.3 3.3 1.0
95 5.6 2.7 4.2 1.3
96 5.7 3.0 4.2 1.2
97 5.7 2.9 4.2 1.3
98 6.2 2.9 4.3 1.3
99 5.1 2.5 3.0 1.1
100 5.7 2.8 4.1 1.3
101 6.3 3.3 6.0 2.5
102 5.8 2.7 5.1 1.9
103 7.1 3.0 5.9 2.1
104 6.3 2.9 5.6 1.8
105 6.5 3.0 5.8 2.2
106 7.6 3.0 6.6 2.1
107 4.9 2.5 4.5 1.7
108 7.3 2.9 6.3 1.8
109 6.7 2.5 5.8 1.8
110 7.2 3.6 6.1 2.5
111 6.5 3.2 5.1 2.0
112 6.4 2.7 5.3 1.9
113 6.8 3.0 5.5 2.1
114 5.7 2.5 5.0 2.0
115 5.8 2.8 5.1 2.4
116 6.4 3.2 5.3 2.3
117 6.5 3.0 5.5 1.8
118 7.7 3.8 6.7 2.2
119 7.7 2.6 6.9 2.3
120 6.0 2.2 5.0 1.5
121 6.9 3.2 5.7 2.3
122 5.6 2.8 4.9 2.0
123 7.7 2.8 6.7 2.0
124 6.3 2.7 4.9 1.8
125 6.7 3.3 5.7 2.1
126 7.2 3.2 6.0 1.8
127 6.2 2.8 4.8 1.8
128 6.1 3.0 4.9 1.8
129 6.4 2.8 5.6 2.1
130 7.2 3.0 5.8 1.6
131 7.4 2.8 6.1 1.9
132 7.9 3.8 6.4 2.0
133 6.4 2.8 5.6 2.2
134 6.3 2.8 5.1 1.5
135 6.1 2.6 5.6 1.4
136 7.7 3.0 6.1 2.3
137 6.3 3.4 5.6 2.4
138 6.4 3.1 5.5 1.8
139 6.0 3.0 4.8 1.8
140 6.9 3.1 5.4 2.1
141 6.7 3.1 5.6 2.4
142 6.9 3.1 5.1 2.3
143 5.8 2.7 5.1 1.9
144 6.8 3.2 5.9 2.3
145 6.7 3.3 5.7 2.5
146 6.7 3.0 5.2 2.3
147 6.3 2.5 5.0 1.9
148 6.5 3.0 5.2 2.0
149 6.2 3.4 5.4 2.3
150 5.9 3.0 5.1 1.8
Species
1 setosa
2 setosa
3 setosa
4 setosa
5 setosa
6 setosa
7 setosa
8 setosa
9 setosa
10 setosa
11 setosa
12 setosa
13 setosa
14 setosa
15 setosa
16 setosa
17 setosa
18 setosa
19 setosa
20 setosa
21 setosa
22 setosa
23 setosa
24 setosa
25 setosa
26 setosa
27 setosa
28 setosa
29 setosa
30 setosa
31 setosa
32 setosa
33 setosa
34 setosa
35 setosa
36 setosa
37 setosa
38 setosa
39 setosa
40 setosa
41 setosa
42 setosa
43 setosa
44 setosa
45 setosa
46 setosa
47 setosa
48 setosa
49 setosa
50 setosa
51 versicolor
52 versicolor
53 versicolor
54 versicolor
55 versicolor
56 versicolor
57 versicolor
58 versicolor
59 versicolor
60 versicolor
61 versicolor
62 versicolor
63 versicolor
64 versicolor
65 versicolor
66 versicolor
67 versicolor
68 versicolor
69 versicolor
70 versicolor
71 versicolor
72 versicolor
73 versicolor
74 versicolor
75 versicolor
76 versicolor
77 versicolor
78 versicolor
79 versicolor
80 versicolor
81 versicolor
82 versicolor
83 versicolor
84 versicolor
85 versicolor
86 versicolor
87 versicolor
88 versicolor
89 versicolor
90 versicolor
91 versicolor
92 versicolor
93 versicolor
94 versicolor
95 versicolor
96 versicolor
97 versicolor
98 versicolor
99 versicolor
100 versicolor
101 virginica
102 virginica
103 virginica
104 virginica
105 virginica
106 virginica
107 virginica
108 virginica
109 virginica
110 virginica
111 virginica
112 virginica
113 virginica
114 virginica
115 virginica
116 virginica
117 virginica
118 virginica
119 virginica
120 virginica
121 virginica
122 virginica
123 virginica
124 virginica
125 virginica
126 virginica
127 virginica
128 virginica
129 virginica
130 virginica
131 virginica
132 virginica
133 virginica
134 virginica
135 virginica
136 virginica
137 virginica
138 virginica
139 virginica
140 virginica
141 virginica
142 virginica
143 virginica
144 virginica
145 virginica
146 virginica
147 virginica
148 virginica
149 virginica
150 virginica
> length(iris)
[1] 5
> summary(iris)
Sepal.Length Sepal.Width Petal.Length
Min. :4.300 Min. :2.000 Min. :1.000
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
Median :5.800 Median :3.000 Median :4.350
Mean :5.843 Mean :3.057 Mean :3.758
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
Max. :7.900 Max. :4.400 Max. :6.900
Petal.Width Species
Min. :0.100 setosa :50
1st Qu.:0.300 versicolor:50
Median :1.300 virginica :50
Mean :1.199
3rd Qu.:1.800
Max. :2.500


Related Solutions

What are some pros and cons to data mining? Provide an example of when data mining...
What are some pros and cons to data mining? Provide an example of when data mining was used and the outcome provided an incorrect assumption or issue. How can these types of situations be avoided in the future?
DATA MINING : Find an interesting data set on the Web. Provide a high level description...
DATA MINING : Find an interesting data set on the Web. Provide a high level description of the data set and minimally give its name, location, number of features (with some discussion of the feature types), and number of entries. Describe how data mining can be applied to it (e.g., for classification, etc.) and describe why you think it is interesting.
This is for Predictive Analytics. 1. Read the iris data set into a data frame. 2....
This is for Predictive Analytics. 1. Read the iris data set into a data frame. 2. Print the first few lines of the iris dataset. 3. Output all the entries with Sepal Length > 5. 4. Plot a box plot of Petal Length with a color of your choice. 5. Plot a histogram of Sepal Width. 6. Plot a scatter plot showing the relationship between Petal Length and Petal Width. 7. Find the mean of Sepal Length by species. Hint:...
Some data mining algorithms work so "well" that they have a tendency to overfit the training...
Some data mining algorithms work so "well" that they have a tendency to overfit the training data. What does the term overfit mean, and what difficulties does overlooking it cause for the data scientist?
Some data mining algorithms work so “well” that they have a tendency to overfit the training...
Some data mining algorithms work so “well” that they have a tendency to overfit the training data. What does the term "overfit" mean, and what difficulties does overlooking it cause for the data scientist?
Background: Anorexia is well known to be difficult to treat. The data set provided below contains...
Background: Anorexia is well known to be difficult to treat. The data set provided below contains data on the weight gain for three groups of young female anorexia patients. These groups include a control group, a group receiving cognitive behavioral therapy and a group receiving family therapy. Source: Hand, D. J., Daly, F., McConway, K., Lunn, D. and Ostrowski, E. eds (1993) A Handbook of Small Data Sets. Chapman & Hall, Data set 285 (p. 229). Directions: Click on the...
Background: Anorexia is well known to be difficult to treat. The data set provided below contains...
Background: Anorexia is well known to be difficult to treat. The data set provided below contains data on the weight gain for three groups of young female anorexia patients. These groups include a control group, a group receiving cognitive behavioral therapy and a group receiving family therapy. Source: Hand, D. J., Daly, F., McConway, K., Lunn, D. and Ostrowski, E. eds (1993) A Handbook of Small Data Sets. Chapman & Hall, Data set 285 (p. 229). Directions: Click on the...
Using R studio 1. Read the iris data set into a data frame. 2. Print the...
Using R studio 1. Read the iris data set into a data frame. 2. Print the first few lines of the iris dataset. 3. Output all the entries with Sepal Length > 5. 4. Plot a box plot of Petal Length with a color of your choice. 5. Plot a histogram of Sepal Width. 6. Plot a scatter plot showing the relationship between Petal Length and Petal Width. 7. Find the mean of Sepal Length by species. Hint: You could...
In the R programming language, we would like to use the data set called iris to...
In the R programming language, we would like to use the data set called iris to build a simple linear regression model to predict Sepal.Length based on Petal.Length. Calculate the least squares regression line to predict Sepal.Length based on Petal.Length. Interpret the slope of the line in the context of the problem. Remember that both variables are measured in centimeters. Plot the regression line in a scatterplot of Sepal.Length vs. Petal.Length. Test H1: ??1 ≠ 0 at ?? = 0.05...
FYI: THIS IS A NEW PROBLEM WITH NEW A SET OF DATA.. PLEASE DO NOT PROVIDE...
FYI: THIS IS A NEW PROBLEM WITH NEW A SET OF DATA.. PLEASE DO NOT PROVIDE OLD ANSWERS. Tom Scott is the owner, president, and primary salesperson for Scott Manufacturing. Because of this, the company's profits are driven by the amount of work Tom does. If he works 40 hours each week, the company's EBIT will be $595,000 per year; if he works a 50-hour week, the company's EBIT will be $715,000 per year. The company is currently worth $3.65...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT