Question

In: Statistics and Probability

The lifetime of Brand A tires are distributed with mean 45,000 miles and standard deviation 4900...

The lifetime of Brand A tires are distributed with mean 45,000 miles and standard deviation 4900 miles, while Brand B tiees last for only 36,000 miles on the average(mean) with standard deviation of 2010 miles. Niccoles Brand A tires lasted 37,000 miles and Yvettes Brand B tires lasted 35,000 miles. Relatively speaking, within their own brands, which driver fot the better wear?

Solutions

Expert Solution

Result:

The lifetime of Brand A tires are distributed with mean 45,000 miles and standard deviation 4900 miles, while Brand B tiees last for only 36,000 miles on the average(mean) with standard deviation of 2010 miles. Niccoles Brand A tires lasted 37,000 miles and Yvettes Brand B tires lasted 35,000 miles. Relatively speaking, within their own brands, which driver fot the better wear?

z = (x-µ)/σ

Z score for Niccoles, z =(37000-45000)/4900 = -1.63

Z score for Yvettes, z =(35000-36000)/2010 = -0.50

Yvettes z score is larger than Niccoles z score.

Within their own brands, Yvettes is the better wear than Niccoles.


Related Solutions

the lifetimes of its tires follow a normal distribution with mean 48,000 miles and standard deviation...
the lifetimes of its tires follow a normal distribution with mean 48,000 miles and standard deviation 5,000 miles. ·a well-labeled sketch of this normal distribution ·the z-score corresponding to 55,000 miles ·the probability that a randomly selected tire lasts for more than 55,000 miles ·the manufacturer wants to issue a guarantee so that 99% of its tires last for longer than the guaranteed lifetime, what z-score should it use to determine that guaranteed lifetime ·the manufacturer wants to issue a...
The lifetimes (in miles) of a certain brand of automobile tires is a normally distributed random...
The lifetimes (in miles) of a certain brand of automobile tires is a normally distributed random variable, X, with a mean lifetime of µ = 40000 miles and standard deviation σ = 2000 miles. The manufacturer would like to offer a guarantee for free replacement of any tire that does not last a specified minimum number of miles. If the manufacturer desires to have a replacement policy that they will need to honor for only 1% of all tires they...
The lifetime of a certain brand of lightbulbs is normally distributed with the mean of 3800...
The lifetime of a certain brand of lightbulbs is normally distributed with the mean of 3800 hours and standard deviation of 250 hours. The probability that randomly selected lightbulb will have lifetime more than 3500 hours is ________ The percent of lightbulbs which have the lifetime between 3500 and 4200 hours is __________ What lifetime should the manufacturer advertise for these lightbulbs if he assumes that 10% of lightbulbs with the smallest lifetimes will burn out by that time? Advertised...
The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours.
The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours. a. What is the probability that a randomly chosen light bulb will last for more than 1800 hours? b. What percentage of bulbs last between 1350 and 1550 hours? c. What percentage of bulbs last less than 1.5 standard deviations below the mean lifetime or longer than 1.5 standard deviations above the mean? d. Find a value k such that 20% of the bulbs last...
The lifetime of batteries in a certain cell phone brand is normally distributed with a mean...
The lifetime of batteries in a certain cell phone brand is normally distributed with a mean of 3.25 years and a standard deviation of 0.8 years. (a) What is the probability that a battery has a lifetime of more than 4 years? (b) What percentage of batteries have a lifetime between 2.8 years and 3.5 years? (c) A random sample of 50 batteries is taken. The mean lifetime L of these 50 batteries is recorded. What is the probability that...
The life of light bulbs is distributed normally. The standard deviation of the lifetime is 20...
The life of light bulbs is distributed normally. The standard deviation of the lifetime is 20 hours and the mean lifetime of a bulb is 590 hours. Find the probability of a bulb lasting for at most 626 hours. Round your answer to four decimal places.
A tire company claims that the lifetimes of its tires average 49750 miles. The standard deviation...
A tire company claims that the lifetimes of its tires average 49750 miles. The standard deviation of tire lifetimes is known to be 4750 miles. You sample 75 tires and will test the hypothesis that the mean tire lifetime is at least 49750 miles against the alternative that it is less. Assume, in fact, that the true mean lifetime is 49250 miles. It is decided to reject H0 if the sample mean is less than 49150. Find the level and...
A manufacturer of a certain type of tires claims that their tire lifetime is 30,000 miles....
A manufacturer of a certain type of tires claims that their tire lifetime is 30,000 miles. The Bureau of Consumer Protection wants to conduct an preliminary investigation on this claim. a. If the true lifetime is only 29,000 miles, what is the chance that the Bureau won’t be able to detect such difference with data only on 16 tires? Assume that the SD of all tire lifetimes is about 1,500 miles. b. How many tires should the Bureau test on...
You measure the lifetime of a random sample of 64 tires of a certain brand. The...
You measure the lifetime of a random sample of 64 tires of a certain brand. The sample mean is x = 56.7 months and the sample variance is 39.1 months squared. Suppose that the lifetimes for tires of this brand follow a normal distribution, with unknown mean µ and a population variance is 25 months squared. Construct a 99% confidence interval for µ, the average lifetime for the tires.
a. A population is normally distributed with a mean of 16.4 and a standard deviation of...
a. A population is normally distributed with a mean of 16.4 and a standard deviation of 1.4. A sample of size 36 is taken from the population. What is the the standard deviation of the sampling distribution? Round to the nearest thousandth. b. A population is normally distributed with a mean of 15.7 and a standard deviation of 1.4. A sample of size 24 is taken from the population. What is the the standard deviation of the sampling distribution? Round...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT