In: Statistics and Probability
A simple random sample of 70 items from a population with σ, = 7 resulted in a sample mean of 33.
If required, round your answers to two decimal places.
a. Provide a 90% confidence interval for the
population mean.
to
b. Provide a 95% confidence interval for the
population mean.
to
c. Provide a 99% confidence interval for the
population mean.
to
Solution :
Given that,
= 33
= 7
n = 70
a) At 90% confidence level the z is ,
= 1 - 90% = 10 - 0.90 = 0.1
/ 2 = 0.1 / 2 = 0.05
Z/2 = Z0.05 = 1.645
Margin of error = E = Z/2* ( /n)
= 1.645 * (7 / 70)
= 1.38
At 90% confidence interval estimate of the population mean is,
- E < < + E
33 - 1.38 < < 33 + 1.38
31.62 < < 34.38
(31.62, 34.38)
b)
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z/2* ( /n)
= 1.96 * (7 / 70)
= 1.64
At 99% confidence interval estimate of the population mean is,
- E < < + E
33 - 1.64 < < 33 + 1.64
31.36 < < 34.64
(31.36, 34.64)
c)
At 99% confidence level the z is ,
= 1 - 99% = 1 - 0.99 = 0.01
/ 2 = 0.01 / 2 = 0.005
Z/2 = Z0.005 = 2.576
Margin of error = E = Z/2* ( /n)
= 2.576 * ( 7/ 70)
= 2.16
At 99% confidence interval estimate of the population mean is,
- E < < + E
33 - 2.16 < < 33 + 2.16
30.84 < < 35.16
(30.84, 35.16)