Question

In: Computer Science

Translate the following C code into M4K assembly language. You do not have to use the...

Translate the following C code into M4K assembly language. You do not have to use the frame pointer, just use $sp if you need to use the stack. You do not have to show the stack initialization nor stack cleanup. If you need a specific value for an address, just make an assumption.

int A;

main()

{

int B = 5;

B = A+B

}; // main

//Disassembly starts here

!main()

{

//stack and frame pointer init // you do not have to show it

! int B = 5; //fill in the blanks

! B = A + B; //fill in the blanks

} // main

Solutions

Expert Solution

A:

.zero 4

main:

push rbp

mov rbp, rsp

mov DWORD PTR [rbp-4], 5

mov eax, DWORD PTR A[rip]

add DWORD PTR [rbp-4], eax

mov eax, 0

pop rbp

ret


Related Solutions

2. Translate the following C/Java code to MIPS assembly code. Assume that the values of a,...
2. Translate the following C/Java code to MIPS assembly code. Assume that the values of a, i, and j are in registers $s0, $t0, and $t1, respectively. Assume that register $s2 holds the base address of the array A (add comments to your MIPS code). j = 0; for(i=0 ; i<a ; i++) A[i]=i+j++;
4.Translate the following C code to MIPS assembly code. Assume that the value of i is...
4.Translate the following C code to MIPS assembly code. Assume that the value of i is in register $t0, and $s0 holds the base address of the integer MemArray if (i > 10) MemArray[i] = 0; else MemArray[i] = -MemArray[i]; 6.Translate the following C code to MIPS assembly code. Use a minimum number of instructions. Assume that the values of a, b, i, and j are in registers $s0, $s1, $t0, and $t1, respectively. Also, assume that register $s2 holds...
Take the following C++ program and translate it into assembly language( pep9 ) #include using namespace...
Take the following C++ program and translate it into assembly language( pep9 ) #include using namespace std; char ch; int main() {    cin >> ch;    cout << "You inputted " << ch << endl;    ch++;    cout << "Next character is " << ch << endl; if (ch <= ‘Z’)         cout << “Could be luppercase\n”;    return 0; }
Translate the following C code to MIPS assembly. The main function and subfunction are translated to...
Translate the following C code to MIPS assembly. The main function and subfunction are translated to two separate .asm files. Finish the assembly code segment for the above requirement. int main() { int x=2; int y=1; int z=0; z=Subfunc(x,y); printf(“Value of z is: %d”, z); } int Subfunc(int x, int y) { int t1=0; t1=x+y+100; return t1;} File 1: .data str: .asciiz "The value of z:" .text #.globl main main: addi $s0, $0,2 #x addi $s1, $0,1 #y addi $s2,...
1.) Translate the following C code to MIPS assembly code. Assume that the variables f, g,...
1.) Translate the following C code to MIPS assembly code. Assume that the variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, respectively. Assume that the base address of the arrays A and B are in registers $s6 and $s7, respectively   B[8] = A[i-j]; 2.Translate the following C code to MIPS assembly code. Assume that the values of v in $a0, k in $a1, temp in $t0.    // leaf procedure that...
Translate the following C code into MIPS Assembly code, assuming Loop Variable k is in $s0...
Translate the following C code into MIPS Assembly code, assuming Loop Variable k is in $s0 and initially containing 0 . Also assume base of array Arr is in $s3 while ( k < = 10 ) { Arr[k] = k ; k = k + 1; }
Translate following pseudo-code to MIPS assembly language cout << “\n Please input a number for $s0”;...
Translate following pseudo-code to MIPS assembly language cout << “\n Please input a number for $s0”; cin >> $s0; cout << “\n Please input a number for $s1”; cin >> $s1; cout << “\n Please input a number for $s2”; cin >> $s2; $t0 = $s0 / 8 - 2 * $s1 + $s2; cout << “\n the Value of the expression “$s0 / 8 - 2 * $s1 + $s2” is ”; cout >> $t0; return;
3. Translate the following C code to MIPS assembly code (in two separate files). int main()...
3. Translate the following C code to MIPS assembly code (in two separate files). int main() { printf(“before subroutine!\n”); Subfunc(); printf(“after subroutine!\n!”); } void Subfunc() {printf(“I am subroutine!\n”);} Submission file: Lab4_3a.asm for the main routine and Lab4_3b.asm for the sub-routine.
3. Translate the following C code to MIPS assembly code (in two separate files). int main()...
3. Translate the following C code to MIPS assembly code (in two separate files). int main() { printf(“before subroutine!\n”); Subfunc(); printf(“after subroutine!\n!”); } void Subfunc() {printf(“I am subroutine!\n”);} 4. Translate the following C code to MIPS assembly (in two separate files). Run the program step by step and observe the order of instructions being executed and the value of $sp. int main() { int x=2; z=Subfunc(x); printf(“Value of z is: %d”, z); } int Subfunc(int x) { return x+1;}
Translate the following C code to MIPS assembly. int a = 1; int b = 2;...
Translate the following C code to MIPS assembly. int a = 1; int b = 2; if (a<b)           a=a+1; b = b + a; printf("The value of b is: %d", b); Translate the following C code to MIPS assembly. int a = 2; int b = 2; if (a<b)           a=a+1; else           a=a-1; b = b + a; printf("The value of b is: %d", b);
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT