Question

In: Statistics and Probability

The shape of the distribution of the time required to get an oil change at a...

  1. The shape of the distribution of the time required to get an oil change at a 10-minute oil change store is unknown. However, records indicate that the mean time to get an oil change at the store is 14 minutes with standard deviation of 3.2 minutes
  1. To compute probabilities regarding the sample mean using the normal distribution, what sample size is required?
  2. What is the probability that a random sample of 40 oil changes results in a sample mean time of less than 10 minutes?
  3. Suppose the manager agrees to pay each employee a $50 bonus if they meet a certain time goal. On a typical Saturday the oil change facility will perform 40 oil changes between 10 am and 12 pm. Treating this as a random sample, what mean oil change time would there be a 10% chance of being at that time or below?

2. A machine is used for filling plastic bottles with a soft drink. The machine is known to have a target means of 2.0 liters and a standard deviation of 0.05 liter.

  1. Suppose you choose a bottle at random filled by this drink dispenser. What is the probability that volume of your bottle has less than 1.98 liters?
  2. Suppose you choose 45 bottles at random filled by this dispenser. What is the probability that the mean amount in this sample is less than 1.98 liters?
  3. A quality control manager obtains a random sample of 45 bottles. He will shut down the machine if the sample mean of these 45 values is less than 1.98 liters or above 2.02 liters. What is the probability that the quality control manager will shut down the machine even though the machine is correctly calibrated?

Solutions

Expert Solution

Let random variable X denote the time required to get an oil change at a 10 minute oil change


Related Solutions

The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 20?-minute ?oil-change facility is unknown.? However, records indicate that the mean time is 21.1 minutes?, and the standard deviation is 4.2 minutes. Suppose the manager agrees to pay each employee a? $50 bonus if they meet a certain goal. On a typical? Saturday, the? oil-change facility will perform 35 oil changes between 10 A.M. and 12 P.M. Treating this as a random? sample, there...
the shape of the distribution of the time required to get an oil change in a...
the shape of the distribution of the time required to get an oil change in a 15 minute oil change facility is on now. However, records indicate them me Tom is 16.8 minutes, and the center deviation is 4.4 minutes. a.) To compute probabilities regarding the sample mean using the normal model what size would be required? b.) what is the probability that a random sample of n equals 40 oil changes results in a sample mean time less than...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 10​-minute oil-change facility is unknown. However, records indicate that the mean time is 11.8 minutes​, and the standard deviation is 4.9 minutes. Complete parts ​(a) through (c). ​(a) To compute probabilities regarding the sample mean using the normal​ model, what size sample would be​ required? A. The sample size needs to be less than or equal to 30. B. Any sample size could be...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 15​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 16.8 minutes​, and the standard deviation is 4.3 minutes. Complete parts​ (a) through​ (c) below. To compute probabilities regarding the sample mean using the normal​ model, what size sample would be​ required? Choose the required sample size below. A. Any sample size could be used. B. The normal model cannot be...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 20-minute oil-change facility is unknown.​ However, records indicate that the mean time is 21.1 minutes​, and the standard deviation is 4.9 minutes. Complete parts ​(a) through (c). ​(a) To compute probabilities regarding the sample mean using the normal​ model, what size sample would be​ required? A. The normal model cannot be used if the shape of the distribution is unknown. B. The sample size...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 20​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 21.4 minutes​, and the standard deviation is 4.5 minutes. ​(c) Suppose the manager agrees to pay each employee a​ $50 bonus if they meet a certain goal. On a typical​ Saturday, the​ oil-change facility will perform 35 oil changes between 10 A.M. and 12 P.M. Treating this as a random​ sample,...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 20 ​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 21.1 minutes ​, and the standard deviation is 4.8 minutes . Complete parts ​(a) through ​(c). ​(a) To compute probabilities regarding the sample mean using the normal​ model, what size sample would be​ required? A. The sample size needs to be less than or equal to 30. B. The sample...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 20​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 21.4 minutes, and the standard deviation is 4.5 minutes. ​(b) What is the probability that a random sample of n =35 oil changes results in a sample mean time less than 20 ​minutes? The probability is approximately _______. ​(Round to four decimal places as​ needed.)
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 1010​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 11.6 minutes11.6 minutes​, and the standard deviation is 4.5 minutes4.5 minutes. Complete parts​ (a) through​ (c) below. Click here to view the standard normal distribution table (page 1). LOADING... Click here to view the standard normal distribution table (page 2). LOADING... ​(a) To compute probabilities regarding the sample mean using the...
The shape of the distribution of the time required to get an oil change at a...
The shape of the distribution of the time required to get an oil change at a 15​-minute ​oil-change facility is unknown.​ However, records indicate that the mean time is 16.3 minutes​, and the standard deviation is 4.3 minutes. Complete parts ​(a) through ​(c). ​(a) To compute probabilities regarding the sample mean using the normal​ model, what size sample would be​ required? A. The sample size needs to be greater than or equal to 30. B. The normal model cannot be...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT