Question

In: Statistics and Probability

Consider the following two models: Model 1:  E(y) = β0 + β1x1 + β2x2 + β3x3 Model...

Consider the following two models:

Model 1:  E(y) = β0 + β1x1 + β2x2 + β3x3

Model 2:  E(y) = β0 + β1x1

Give the null hypothesis for comparing the two models with a best subset (or partial) F-test.

H0: β1 = β2 = β3  

H0: β2 = β3 = 0  

H0: β1 = 0

Let x1 represent a quantitative independent variable and x2 represent a dummy variable for a 2-level qualitative independent variable. Which of the following models is the equation that produces two parallel curves, one for each level of your QL variable?

E(y) = β0 + β1x1 + β2x12 + β3x2 + β4x1x2 + β5x12x2

E(y) = β0 + β1x1 + β2x12 + β3x2

E(y) = β0 + β1x1 + β3x2

Solutions

Expert Solution

please rate my work ..........its very important for me.........


Related Solutions

Please answer asap 1. Consider the following model y = β0 + β1x1 + β2x2 +...
Please answer asap 1. Consider the following model y = β0 + β1x1 + β2x2 + β3x3 + , where y denotes the tool life and x1, x2, and x3 denote the cutting speed, tool type, and type of cutting oil, respectively. There are two different tool types, A and B, and there are two type of cutting oils, low-viscosity oil and medium-viscosity oil. The two categorical predictors are defined as x2 = (1 if type A 0 if type...
You have the following regression model. y = β0 + β1x1 + β2x2 + β3x3 + u
You have the following regression model. y = β0 + β1x1 + β2x2 + β3x3  + u You are sure the first four Gauss-Markov assumptions hold, but you are concerned that the errors are heteroskedastic. How would you test for hetereskedasticity? Show step by step.
Consider E(Y|X1 X2) = β0 + β1X1 + β2X2. Interpret β2. Group of answer choices a....
Consider E(Y|X1 X2) = β0 + β1X1 + β2X2. Interpret β2. Group of answer choices a. It is the value of X2, on average, when X1 = 0. b. It is the change in the response, on average, for every unit increase in X2, when X1 is fixed. c. It is the change in the response, on average, for every unit increase in X2. d. It is the change in X2, on average, for every unit increase in X1, holding...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + ui,=...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + ui,= (∗) transform the regression so that you can use a t-statistic to test a. β1 = β2 b. β1 + 2β2 = 0. c. β1 + β2 = 1. (Hint: You must redefine the dependent variable in the regression.)
(2) Suppose the original regression is given by y = β0 + β1x1 + β2x2 +...
(2) Suppose the original regression is given by y = β0 + β1x1 + β2x2 + β3x3 + u. You want to test for heteroscedasticity using F test. What auxiliary regression should you run? What is the null hypothesis you need to test?
In the model Yi = β0 + β1X1 + β2X2 + β3(X1 × X2) + ui,...
In the model Yi = β0 + β1X1 + β2X2 + β3(X1 × X2) + ui, suppose X1 increased by 1 unit, then expected effect for Y is (How much Y will increase?): A. β1. B. β1 + β3X2. C. β1 + β3X1. D. β1 + β3. The interpretation of the slope coefficient in the model ln(Yi) = β0 + β1 ln(Xi)+ ui is as follows: A. a 1% change in X is associated with a change in Y of...
Using the appropriate model, sample size n, and output below: Model: y = β0 + β1x1...
Using the appropriate model, sample size n, and output below: Model: y = β0 + β1x1 + β2x2 + β3x3 + ε Sample size: n = 16 Regression Statistics Multiple R .9979 R Square .9958 Adjusted R Square .9947 Standard Error 403.4885 Observations 16 ANOVA DF SS MS F Significance F Regression 3 462,169,641.8709 154,056,547.2903 946.2760 .0000 Residual 12 1,953,635.6197 162,802.9683 Total 15 464,123,277.4907 (1) Report SSE, s2, and s as shown on the output. (Round your answers to 4...
Consider the simple regression model: Yi = β0 + β1Xi + e (a) Explain how the...
Consider the simple regression model: Yi = β0 + β1Xi + e (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for β0 and β1are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of will decline as the sample size increases. Explain the importance of this.
Consider the following two models relates education to wage: log(wage) = β0 + β1educ + u...
Consider the following two models relates education to wage: log(wage) = β0 + β1educ + u log(wage) = β0 + β1educ + β2sibs + e where wage denotes monthly wage; educ is the education level measured by year; and sibs is the number of siblings. Let βe1 denotes the estimator of β1 from the simple regression, and βb1 denotes the estimator from the multiple regression. (a) Suppose educ and sibs are positively correlated in the sample, and sibs has negative...
Consider 2 models: yi = β1 + β2xi + ei (1) Y = X0β + e;...
Consider 2 models: yi = β1 + β2xi + ei (1) Y = X0β + e; (2) where Equation (1) represents a system of n scalar equations for individuals i = 1; ...; n , and Equation (2) is a matrix representation of the same system. The vector Y is n x 1. The matrix X0 is n x 2 with the first column made up entirely of ones and the second column is x1; x2; ...; xn. a. Set...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT