Question

In: Physics

Imagine you have two converging lenses. Lens A has a focal length of 12.5 cm. Lens...

Imagine you have two converging lenses. Lens A has a focal length of 12.5 cm. Lens B has a focal length of 50.0 cm. The diameter of each lens is 6.50 cm. Assume a near point of 25.0 cm.

a)     How could you make a microscope with 4x magnification using these lenses?

b)     How could you make a telescope with 4x magnification using these lenses?

c)     Which of these is more practical? Why?

Solutions

Expert Solution

a) Let , Focal length of lens A be fa = 12.5 cm

Focal length of lens B be fb = 50.0 cm

Tube lenght of microscope = s (s is also approximate distance between two lenses)

For microscope, we choose fa to be objective lens and fb to be eyepiece. (Reason is quite simple we want object to be closer to microscope, so it can gather more light from object.)

Magnification of microscope M = m.mo (m = Lateral magnification of objective, m0 = Angular magnification of eyepiece)

m = (i / p) (i = image distance, p = object distance)

In microscope , object is close to focal length of Objective , p = fa  and image distance is approximated to i = s (s = tube length )

m = (s / fa)

mo = (25cm / fb)

  

s = 100 cm

Thus by keeping tube lenght 100 cm, 4x magnification can be achieved.

b) For refracting telescope , we keep fb to be objective and fa to be eyepiece.

Magnification of telescope M = -(fb / fa)

= -(50.0 / 12.5)

M = 4

Keeping larger focal length lens as objective , we can make telescope.

c) Making Telescope is more practical than microscope.

Only bcoz tube lenght of s = 100 cm = 1m is too long for practical microscope.

  

  


Related Solutions

A diverging lens of focal length -12.5 cm is placed 40.0 cm from a converging lens...
A diverging lens of focal length -12.5 cm is placed 40.0 cm from a converging lens of unknown focal length.  A 15.2 cm tall erect object is placed 25.3 cm in front of the diverging lens which is to produce an image on a screen that is twice the size of the original object but inverted. A) Where should the screen be located to produce a clear image? Give the distance from the converging lens to the screen in cm. B)...
Two converging lenses having focal lengths of f1 = 12.5 cm and f2 = 19.5 cm...
Two converging lenses having focal lengths of f1 = 12.5 cm and f2 = 19.5 cm are placed a distance d = 48.5 cm apart as shown in the figure below. The image due to light passing through both lenses is to be located between the lenses at the position x = 32.5 cm indicated. Four objects are arranged along a horizontal line. From left to right, they are: An arrow, labeled "Object", begins on the line and points upward;...
Lens 1, in a two-lens system, is converging with a focal length +15.0 cm and Lens...
Lens 1, in a two-lens system, is converging with a focal length +15.0 cm and Lens 2 is also converging, with a focal length of +5.0 cm. An object is placed 40.0 cm to the left of Lens 1, as shown. If the two lenses are separated by 30.0 cm, where is the final image in relation to Lens 2?
1. Two converging lenses have the same focal length of 5.00 cm. They have a common...
1. Two converging lenses have the same focal length of 5.00 cm. They have a common principal axis and are separated by 28.5 cm. An object is located 10.0 cm to the left of the left-hand lens. What is the image distance (relative to the lens on the right) of the final image produced by this two-lens system? 2. A plate glass window (n = 1.5) has a thickness of 5.2 mm. How long does it take light to pass...
A converging lens has a focal length of 15 cm. If an object is placed at...
A converging lens has a focal length of 15 cm. If an object is placed at a distance of 5 cm from the lens, a. find the image position d i = _____ cm (include sign +/-) b. find the magnification M = _____(include sign +/-) c. characterize the resulting image. ________(real or virtual) ________(enlarged or reduced) ________(upright or inverted)
A converging lens has a focal length of 21.1 cm. (a) Locate the object if a...
A converging lens has a focal length of 21.1 cm. (a) Locate the object if a real image is located at a distance from the lens of 63.3 cm. distance cm location (b) Locate the object if a real image is located at a distance from the lens of 105.5 cm. distance cm location (c) Locate the object if a virtual image is located at a distance from the lens of -63.3 cm. distance cm location (d) Locate the object...
A converging lens has a focal length of magnitude 16.0 cm. Two objects A and B...
A converging lens has a focal length of magnitude 16.0 cm. Two objects A and B having equal height of 2.5 cm are placed in front of the lens at 13.0 cm and 19.0 cm, respectively. Find their image distances, heights, and describe each image (in terms of real, virtual, upright, inverted).
A converging lens of focal length 19.3 cm is separated by 49.3 cm from a converging...
A converging lens of focal length 19.3 cm is separated by 49.3 cm from a converging lens of the focal length 4.53 cm. Find the position of the final image with respect to the second lens of an object placed 38.6 cm in front the first lens. Answer in units of cm. 021 (part 2 of 3) 10.0 points If the height of the object is 1.7 cm, what is the height of the final image? Answer in units of...
Two converging lenses, each of focal length 15 cm, are placed 52 cm apart, and an...
Two converging lenses, each of focal length 15 cm, are placed 52 cm apart, and an object is placed 30 cm in front of the first lens (a) Where is the final image formed with respect to the second lense? 60.8 cm behind the second lense 60.8 cm in front of the second lense 47.1 cm in front of the second lense 47.1 cm behind the second lense (b) What is the magnification of the system? 0.5 –1 –3.1 2.1
Two converging lenses, each of focal length 14.9 cm, are placed 39.5 cm apart, and an...
Two converging lenses, each of focal length 14.9 cm, are placed 39.5 cm apart, and an object is placed 30.0 cm in front of the first lens. Where is the final image formed? The image is located  cm  ---Location--- in front of the first lens. in front of the second lens. behind the second lens. What is the magnification of the system? M =  ✕
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT