In: Statistics and Probability
The following data gives the creatinine clearance Y (in $1000’s) of a sample of 33 male subjects along with their creatinine concentration (X1), age (X2) and the weight (X3). The data are:
X1 |
X2 |
X3 |
Y |
0.71 |
38 |
71 |
132 |
1.48 |
78 |
69 |
53 |
2.21 |
69 |
85 |
50 |
1.43 |
70 |
100 |
82 |
0.68 |
45 |
59 |
110 |
0.76 |
65 |
73 |
100 |
1.12 |
76 |
63 |
68 |
0.92 |
61 |
81 |
92 |
1.55 |
68 |
74 |
60 |
0.94 |
64 |
87 |
94 |
1.07 |
49 |
93 |
98 |
0.70 |
43 |
60 |
112 |
0.71 |
42 |
70 |
125 |
1.0 |
66 |
83 |
108 |
2.52 |
78 |
70 |
30 |
1.13 |
35 |
73 |
111 |
1.12 |
34 |
85 |
130 |
1.38 |
35 |
68 |
94 |
1.12 |
16 |
65 |
130 |
0.97 |
54 |
53 |
59 |
1.61 |
73 |
50 |
38 |
1.58 |
66 |
74 |
65 |
1.40 |
31 |
67 |
85 |
0.68 |
32 |
80 |
140 |
1.20 |
21 |
67 |
80 |
2.10 |
73 |
72 |
43 |
1.36 |
78 |
67 |
75 |
1.50 |
58 |
60 |
41 |
0.82 |
62 |
107 |
120 |
1.53 |
70 |
75 |
52 |
1.58 |
63 |
62 |
73 |
1.37 |
68 |
52 |
57 |
E(ln(Y)) = b0+ b1ln(X1)+ b2ln(140-X2)+b3ln(X3).
Fit the theoretical model and examine all the relevant model diagnostics. Do any of the problems encountered with the model in (d) (if there were any problem encountered) seem to have been resolved?