In: Statistics and Probability
The accompanying dataset shows the monthly number of new car sales in the last three years. Develop a multiple regression model with categorical variables that incorporate seasonality for forecasting sales.
Data
Month   Year   Units
Jan   1   39,830
Feb   1   40,101
Mar   1   47,460
Apr   1   47,317
May   1   49,231
Jun   1   51,499
Jul   1   46,486
Aug   1   45,220
Sep   1   44,820
Oct   1   47,009
Nov   1   42,181
Dec   1   44,206
Jan   2   42,247
Feb   2   45,442
Mar   2   54,095
Apr   2   50,946
May   2   53,592
Jun   2   54,940
Jul   2   54,469
Aug   2   56,099
Sep   2   52,197
Oct   2   50,107
Nov   2   48,533
Dec   2   49,298
Jan   3   48,154
Feb   3   54,907
Mar   3   61,086
Apr   3   53,370
May   3   59,487
Jun   3   59,390
Jul   3   55,108
Aug   3   59,369
Sep   3   54,492
Oct   3   53,184
Nov   3   48,813
Dec   3   46,976
Develop a multiple regression model with categorical variables that incorporate seasonality for forecasting sales, where December is the reference month.
Units=____+(_____)•Year+(____)•Jan +(____)•Feb +(_____)•Mar +(_____)•Apr +(_____)•May+(_____)•Jun+(_____)•Jul+(____)•Aug+(____)•Sep+(____)•Oct+(____)•Nov
(Round to the nearest integer as needed.)
* Please show how to get the results
Thank you
Units=37,745.3333+(4,540.6667)•Year+(-3,416.3333)•Jan +(-10.0000)•Feb +(7,387.0000)•Mar +(3,717.6667)•Apr +(7,276.6667)•May+(8,449.6667)•Jun+(5,194.3333)•Jul+(6,736.0000)•Aug+(3,676.3333)•Sep+(3,273.3333)•Oct+(-317.6667)•Nov
The setup of this model is:

The regression analysis is:

| Month | Units | Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 
| Jan | 39830 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Feb | 40101 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Mar | 47460 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Apr | 47317 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| May | 49231 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Jun | 51499 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| Jul | 46486 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 
| Aug | 45220 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| Sep | 44820 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| Oct | 47009 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| Nov | 42181 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| Dec | 44206 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Jan | 42247 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Feb | 45442 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Mar | 54095 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Apr | 50946 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| May | 53592 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Jun | 54940 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| Jul | 54469 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 
| Aug | 56099 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| Sep | 52197 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| Oct | 50107 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| Nov | 48533 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| Dec | 49298 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Jan | 48154 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Feb | 54907 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Mar | 61086 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Apr | 53370 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| May | 59487 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| Jun | 59390 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| Jul | 55108 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 
| Aug | 59369 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| Sep | 54492 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 
| Oct | 53184 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 
| Nov | 48813 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| Dec | 46976 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |