In: Statistics and Probability
This problem has several parts.
The table below shows the ages and bone densities for five women.
| Age | 40 | 42 | 47 | 51 | 50 | 
|---|---|---|---|---|---|
| Bone Density | 340 | 335 | 319 | 319 | 310 | 
| Enter the slope and y-intercept of the regression line, using age as the independent variable. Round your answers to two decimal places. | ||||
| Slope: | Intercept: | |||
| Using your regression line (with rounded coefficients), predict the bone density of a 53-year-old woman to the nearest whole number. | ||||
| Estimate: | ||||
| Did you just perform interpolation or
extrapolation? A. interpolation B. extrapolation  | 
||||
| Enter r for this data, each rounded to the nearest hundredth. | ||||
| Correlation: | ||||
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 230 | 1623 | 94 | 621.2 | -226.00 | 
| mean | 46.00 | 324.60 | SSxx | SSyy | SSxy | 
sample size ,   n =   5  
       
here, x̅ = Σx / n=   46.00   ,
    ȳ = Σy/n =   324.60  
          
       
SSxx =    Σ(x-x̅)² =    94.0000  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   -226.0  
       
          
       
estimated slope , ß1 = SSxy/SSxx =  
-226.0   /   94.000   =  
-2.40
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
435.20          
          
       
so, regression line is   Ŷ =  
435.20   +   -2.40   *x
......................
Predicted Y at X=   53  
is          
       
Ŷ =   435.19574   +  
-2.404255   *   53   =  
308
.................
A. interpolation
....................
correlation coefficient , r = Sxy/√(Sx.Sy) = -0.94
.................
THANKS
revert back for doubt
please upvote