Question

In: Chemistry

For the reaction: CH3OH(g) ↔ CO(g) + 2H2(g), with the equilibrium concentrations for [CH3OH]=0.20M, [CO]=0.44M, and...

For the reaction: CH3OH(g) ↔ CO(g) + 2H2(g), with the equilibrium concentrations for [CH3OH]=0.20M, [CO]=0.44M, and [H2]=2.7M, determine the gas phase equilibrium constant (Kp) at 400 0C?

Solutions

Expert Solution

CH3OH(g) ↔ CO(g) + 2H2(g)

equilibrium constant=kc=[H2]^2 [CO]/[CH3OH]=(2.7M)^2 (0.44M)/(0.20M)=16.038 M^2

Kp=p(H2)^2* p(CO)/p(CH3OH) where p indicates the partial pressure of gases,p=cRT ,where c=concentration of the gases=[gas]

Kp={[H2]^2 (RT)^2}*{[CO]*RT}/{[CH3OH]*RT}=[H2]^2 [CO]/[CH3OH] *(RT)^(2+1-1)=Kc*(RT)^2

[in short Kp and Kc are related by the equation: Kp=Kc(RT)^n ,n=mol of product -mol of reactants]

kp=kc*(RT)^2 ,R=ideal gas constant=0.0821L atm/Kmol,T=400+273=673K

Kp=(16.038M^2 )((0.0821L atm/Kmol)*673K)^2=48962.846 L^2 atm^2   

Units: [(mol/L) *(L atm/Kmol)*K]^2=[(L atm)]^2

Kp=48962.846


Related Solutions

Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g)CO(g)+2H2(g)⇌CH3OH(g) The reaction between COCO and H2H2 is carried out at a...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g)CO(g)+2H2(g)⇌CH3OH(g) The reaction between COCO and H2H2 is carried out at a specific temperature with initial concentrations of COCO = 0.32  M M and H2H2 = 0.52  M M. At equilibrium, the concentration of CH3OHCH3OH is 0.15  M M. Find the equilibrium constant at this temperature. Express your answer using two significant figures.
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g)CO(g)+2H2(g)⇌CH3OH(g) The reaction between COCO and H2H2 is carried out at a...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g)CO(g)+2H2(g)⇌CH3OH(g) The reaction between COCO and H2H2 is carried out at a specific temperature with initial concentrations of COCO = 0.26  M M and H2H2 = 0.49  M M. At equilibrium, the concentration of CH3OHCH3OH is 0.16  M M. Part A Find the equilibrium constant at this temperature. Express your answer using two significant figures. KcKc = SubmitPrevious AnswersRequest Answer
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) The reaction between CO and H2 is carried out at a...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) The reaction between CO and H2 is carried out at a specific temperature with initial concentrations of CO = 0.32 M and H2 = 0.53 M. At equilibrium, the concentration of CH3OH is 0.16 M. Part A Find the equilibrium constant at this temperature. Express your answer using two significant figures.
CH3OH can be synthesized by the following reaction. CO(g)+2H2(g)→CH3OH(g) What volume of H2 gas (in L),...
CH3OH can be synthesized by the following reaction. CO(g)+2H2(g)→CH3OH(g) What volume of H2 gas (in L), measured at 746 mmHg and 84 ∘C, is required to synthesize 23.4 g CH3OH? How many liters of CO gas, measured under the same conditions, is required?
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15 −L flask at a certain temperature contains 26.6 g CO and 2.36 g H2 . At equilibrium, the flask contains 8.67 g CH3OH . Calculate the equilibrium constant (Kc) for the reaction at this temperature.        
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.16 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.16 −L flask at a certain temperature contains 27.2 g CO and 2.36 g H2. At equilibrium, the flask contains 8.64 g CH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature.
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15 −L flask at a certain temperature contains 26.5 g CO and 2.34 g H2. At equilibrium, the flask contains 8.65 g CH3OH. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature.
Consider the following reaction: CH3OH(g)⇌CO(g)+2H2(g) Part A Calculate ΔG for this reaction at 25 ∘C under...
Consider the following reaction: CH3OH(g)⇌CO(g)+2H2(g) Part A Calculate ΔG for this reaction at 25 ∘C under the following conditions: PCH3OH= 0.885 atm PCO= 0.145 atm PH2= 0.175 atm ΔG = nothing   kJ  
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15-L flask at a certain temperature...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15-L flask at a certain temperature initially contains 26.7 g CO and 2.32 g H2. At equilibrium, the flask contains 8.65 gCH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature.
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15-L flask at a certain temperature contains...
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15-L flask at a certain temperature contains 27.3 gCO and 2.35 gH2. At equilibrium, the flask contains 8.66 gCH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT