Question

In: Finance

You are constructing a scatter plot of excess returns for stock A versus the market index....

You are constructing a scatter plot of excess returns for stock A versus the market index. If the correlation coefficient between stock A and the index is 0.1, you will find that the points of the scatter diagram (select one: all fall on the line of best fit; are widely scattered around the line) and the line of best fit has a (select one: positive; negative) slope.

  • A. all fall on the line of best fit; positive slope
  • B. all fall on the line of best fit; negative slope
  • C. are widely scattered around the line; positive slope
  • D. are widely scattered around the line; negative slope

Solutions

Expert Solution

Correlation of .1 is low correlation, when stock will not be moving in relation to the market.

It will mean that these are widely scattered around the line on the positive slope because the correlation is highly lower.

Correct answer is option (C)

all other options are false because it is not a negative correlation or perfect positive correlation.


Related Solutions

Assume that stock market returns have the market index as a common factor, and that all...
Assume that stock market returns have the market index as a common factor, and that all stocks in the economy have a beta of 1.3 on the market index. Firm-specific returns all have a standard deviation of 35%. Suppose that an analyst studies 20 stocks, and finds that half have an alpha of +1.8%, and the other half an alpha of –1.8%. Suppose the analyst buys $2.0 million of an equally weighted portfolio of the positive alpha stocks and shorts...
Assume that stock market returns have the market index as a common factor, and that all...
Assume that stock market returns have the market index as a common factor, and that all stocks in the economy have a beta of 1.6 on the market index. Firm-specific returns all have a standard deviation of 20%. Suppose that an analyst studies 20 stocks and finds that one-half of them have an alpha of +2.4%, and the other half have an alpha of −2.4%. Suppose the analyst invests $1.0 million in an equally weighted portfolio of the positive alpha...
Assume that stock market returns have the market index as a common factor, and that all...
Assume that stock market returns have the market index as a common factor, and that all stocks in the economy have a beta of 1.9 on the market index. Firm-specific returns all have a standard deviation of 40%. Suppose that an analyst studies 20 stocks and finds that one-half of them have an alpha of +2.8%, and the other half have an alpha of −2.8%. Suppose the analyst invests $1.0 million in an equally weighted portfolio of the positive alpha...
Assume that stock market returns have the market index as a common factor, and that all...
Assume that stock market returns have the market index as a common factor, and that all stocks in the economy have a beta of 1.8 on the market index. Firm-specific returns all have a standard deviation of 40%. Suppose that an analyst studies 20 stocks and finds that one-half of them have an alpha of +2.8%, and the other half have an alpha of −2.8%. Suppose the analyst invests $1.0 million in an equally weighted portfolio of the positive alpha...
Assume that stock market returns have the market index as a common factor, and that all...
Assume that stock market returns have the market index as a common factor, and that all stocks in the economy have a beta of 1.2 on the market index. Firm-specific returns all have a standard deviation of 25%. Suppose that an analyst studies 20 stocks and finds that one-half of them have an alpha of +1.6%, and the other half have an alpha of −1.6%. Suppose the analyst invests $1.0 million in an equally weighted portfolio of the positive alpha...
Assume that stock market returns have the market index as a common factor, and that all...
Assume that stock market returns have the market index as a common factor, and that all stocks in the economy have a beta of 1.9 on the market index. Firm-specific returns all have a standard deviation of 40%. Suppose that an analyst studies 20 stocks and finds that one-half of them have an alpha of +2.8%, and the other half have an alpha of −2.8%. Suppose the analyst invests $1.0 million in an equally weighted portfolio of the positive alpha...
Assume that stock market returns have the market index as a common factor, and that all...
Assume that stock market returns have the market index as a common factor, and that all stocks in the economy have a beta of 1 on the market index. Firm-specific returns all have a standard deviation of 30%. Suppose that an analyst studies 20 stocks, and finds that one-half have an alpha of 2%, and the other half an alpha of −2%. Suppose the analyst buys $1 million of an equally weighted portfolio of the positive alpha stocks, and shorts...
The fact that insider trading consistently produces excess returns proves that the stock market is Not...
The fact that insider trading consistently produces excess returns proves that the stock market is Not strong form efficient Not semi strong form efficient Not weak form efficient 100% efficient The P/E ratio of a stock is roughly the reciprocal of The debt ratio The debt to equity ratio The balance sheet ratio The company’s return on equity The recent drop in the stock market due to the Coronavirus is probably best classified as a Systemic risk non-systemic risk fundamental...
Suppose that the Index Model for the excess returns of stocks A and B is estimated...
Suppose that the Index Model for the excess returns of stocks A and B is estimated with the following results: RA = 0.01 + 0.80 * Rm + eA RB = -0.02 + 1.5 * Rm + eB Stdev(Rm)=0.25 Stdev(eA)=0.40 Stdev(eB)=0.20 What is the Standard Deviation of each Stock. What is the Covariance between Stock A and Stock B. What is the Correlation between Stock A and Stock B
Suppose that the index model for stocks A and B is estimated from excess returns with...
Suppose that the index model for stocks A and B is estimated from excess returns with the following results: RA = 5.0% + 1.30RM + eA RB = –2.0% + 1.6RM + eB σM = 20%; R-squareA = 0.20; R-squareB = 0.12 Break down the variance of each stock to the systematic and firm-specific components. (Do not round intermediate calculations. Calculate using numbers in decimal form, not percentages. Round your answers to 4 decimal places.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT