Question

In: Advanced Math

Problem 1. We are going to multiply the two polynomials A(x) = 5 − 3x and...

Problem 1. We are going to multiply the two polynomials A(x) = 5 − 3x and B(x) = 4 + 2x to produce C(x) = a + bx + cx2 in three different ways. Do this by hand, and show your work.

(a) Multiply A(x) × B(x) algebraically.

(b) (i) Evaluate A and B at the three (real) roots of unity 1, i, −1. (Note that we could use any three values.)

(ii) Multiply the values at the three roots of unity to form the values of C(x) at the three roots.

(iii) Plug 1, i, −1 into C(x) = a + bx + cx2 to form three simultaneous equations with three unknowns.

(iv) Solve for a, b, c.

(c) (i) Evaluate A(x) and B(x) at the four (real) 4th roots of unity 1, i, −1, −i.

(ii) Multiply the values at the four 4th roots to form the values of C(x) at the four 4th roots.

(iii) Create the polynomial D(x) = C(1) + C(i)x + C(−1)x 2 + C(−i)x 3 .

(iv) Evaluate D(x) at the four 4th roots of unity 1, i, −1, −i. (v) Use these values to construct C(x).

Solutions

Expert Solution


Related Solutions

find f'(x) 1. f(x)=3sinx-secx+5 _______ 2. f(x)=e^xcot(3x) _______ 3. f(x)= cos^5(3x-1) _______
find f'(x) 1. f(x)=3sinx-secx+5 _______ 2. f(x)=e^xcot(3x) _______ 3. f(x)= cos^5(3x-1) _______
Given: f(x,y) = 5 - 3x - y for 0 < x,y < 1 and x...
Given: f(x,y) = 5 - 3x - y for 0 < x,y < 1 and x + y < 1, 0 otherwise 1) find the covariance of x and y 2) find the marginal probability density function for x c) find the probability that x >= 0.6 given that y <= 0.2
Factor the following polynomials as a product of irreducible in the given polynomial ring. A. p(x)=2x^2+3x-2...
Factor the following polynomials as a product of irreducible in the given polynomial ring. A. p(x)=2x^2+3x-2 in Q[x] B. p(x)=x^4-9 in Q[x] C. p(x)=x^4-9in R[x] D. p(x)=x^4-9in C[x] E. f(x)=x^2+x+1 in R[x] F. f(x)=x^2+x+1in C[x]
Problem 1: Evaluation of a known integral using various quadratures: In this problem, we are going...
Problem 1: Evaluation of a known integral using various quadratures: In this problem, we are going to compute the price of a European call option with 3 month expiry, strike 12, and implied vol 20, Assume the underlying is 10 now and the interest rate is 4%. 1. Use Black-Scholes formula to compute the price of the call analytically. 2. Calculate the price of the call numerically using the following 3 quadrature methods: (a) Left Riemann rule (b) Midpoint rule...
Consider ​z = x ​ 1 ​ 2 ​ - 3x ​ 1 ​ x ​...
Consider ​z = x ​ 1 ​ 2 ​ - 3x ​ 1 ​ x ​ 2 ​ + 3x ​ 2 ​ 2 ​ + 4x ​ 2 ​ x ​ 3 ​ + 6x ​ 3 ​ 2 ​ . 1)Find the extreme values, if any, of the above function. 2)Check whether they are maxima or minima.
Develop a recursive algorithm that multiply two integer numbers x and y, where x is an...
Develop a recursive algorithm that multiply two integer numbers x and y, where x is an m-bit number and y is an n-bit number (10 points), and analyze the time complexity of this algorithm (10 points).
In this exercise, we will prove the Division Algorithm for polynomials. Let R[x] be the ring...
In this exercise, we will prove the Division Algorithm for polynomials. Let R[x] be the ring of polynomials with real coefficients. For the purposes of this exercise, extend the definition of degree by deg(0) = −1. The statement to be proved is: Let f(x),g(x) ∈ R[x][x] be polynomials with g(x) ? 0. Then there exist unique polynomials q(x) and r(x) such that f (x) = g(x)q(x) + r(x) and deg(r(x)) < deg(g(x)). Fix general f (x) and g(x). (a) Let...
1) Let P(x) = 3x(x − 1)3 (3x + 4)2 . List the zeros of P...
1) Let P(x) = 3x(x − 1)3 (3x + 4)2 . List the zeros of P and their corresponding multiplicities. 2) Let f(x) = −18(x + 3)2 (x − 2)3 (x + 71)5 . Describe the end behavior of f by filling in the blank below. As x → −∞, f(x) → . As x → ∞, f(x) → . 3) The polynomial of degree 4, P(x) has a root of multiplicity 2 at x = 3 and roots of...
1. f(x)= 3x / x^2 + 1 - Vertical Asymtote As x → −, f(x) →...
1. f(x)= 3x / x^2 + 1 - Vertical Asymtote As x → −, f(x) → As x →  +, f(x) → - Any hole in graph - Horizontal asymtote As x → −, f(x) → As x →  +, f(x) →
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is...
Let R[x, y] be the set of polynomials in two coefficients. Prove that R[x, y] is a vector space over R. A polynomial f(x, y) is called degree d homogenous polynomial if the combined degree in x and y of each term is d. Let Vd be the set of degree d homogenous polynomials from R[x, y]. Is Vd a subspace of R[x, y]? Prove your answer.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT