In: Chemistry
CN-(aq)+NH4(aq) <-> HCN(aq) + NH3(aq)
A solution is prepaired with all reactants at 0.45M and all products at 0.25M
a) Calculate (delta)Go and K (at 298K)
b) Calculate Q and G and indicates in what direction the reaction will proceed
c) Determine the concentrations once equilbrium is reached
d) What would be the effect of heating the solution at equilbrium.
A) CN-(aq)+NH4(aq) ↔ HCN(aq) + NH3(aq) (neutralization )
Can be divided into two reactions,
At 298K
CN-(aq) +H+ ↔ HCN(aq) ka=6.17*10^-10
Kb=kw/ka=10^-14/6.17*10^-10=0.162*10^-4
Or, Kb=0.162*10^-4 (equilibrium constant )=[HCN]/[CN-]
And
NH4+ (aq) ↔ NH3(aq) + H+ ka=5.6*10^-10)=[NH3]/[NH4+]
So for net rxn ,
CN-(aq)+NH4(aq) ↔ HCN(aq) + NH3(aq)
Keq=kb*ka=(0.162*10^-4)( ka=5.6*10^-10)=[HCN][NH3]/[CN-][NH4+]
Keq=0.907*10^-14
∆Go (at equilibrium)=-RT ln Keq=-(8.314 J/K mol)(298K) ln (0.907*10^-14)
=-2477.6 J/mol *2.303 log (0.907*10^-14)
=-5705.91 J/mol (-14.013)
∆Go =79956.96 j/mol=799.57 KJ/mol
B)Q=[HCN][NH3]/[CN-][NH4+]=(0.25M)(0.25M)/(0.45M)(0.45M)=0.0625/0.2025=0.3086
Q=0.3086
∆G=∆Go+RT ln Q=799.57 KJ/mol +(8.314 J/K mol)(298K) ln (0.3086)
=799.57 KJ/mol + 2477.6 J/mol *2.303 log (0.3086)
=799.57 KJ/mol + 5705.91 J/mol (-0.51)= 799.57 KJ/mol -2910.01 J/mol
=799.57 KJ/mol -2.910 k J/mol
∆G =796.66 kj/mol
Q>Keq so reverse rxn is favoured
C)ICE table
CN-(aq)+NH4(aq) ↔ HCN(aq) + NH3(aq)
[CN-] |
[NH4+] |
[HCN] |
[NH3] |
||
Initial |
0.45 |
0.45 |
0.25 |
0.25 |
|
change |
-x |
-x |
+x |
+x |
|
equilibrium |
0.45-x |
0.45-x |
0.25+x |
0.25+x |
|
Keq=[HCN][NH3]/[CN-][NH4+]
Or, 0.907*10^-14=(0.25-x)^2/(0.45-x)^2
Or, 0.907*10^-14=0.0625 +x^2-0.5x/0.2025 +x^2-0.9x
Ignoring x^2 terms x<<< than 0.45,0.25 .(weak acid and base dissociation is very low)
0.907*10^-14=0.0625 -0.5x/0.2025 -0.9x
0.1837*10^-14-0.8163*10^-14x=0.0625 -0.5x
Or, 0.1837*10^-14-0.0625=-0.5x+0.8163*10^-14x
Or, -0.0625=-0.5x
X=0.125M
Equilibrium conc of all species=0.125M
D)heating the solution at equilibrium would shift equilibrium in forward direction, as the rxn will be forward favoured