In: Finance
A company is considering a new project requiring an upfront
fixed-asset investment of $1,000,000 with an economic life of five
years. Depreciation is taken on a straight-line basis, with no
expected salvage value. Net working capital required immediately is
expected to be $100,000 and will be recovered in full upon the
project's completion in five years. In the expected-scenario
forecast, the annual sales volume is 41,700 units, while the sale
price is $113 per unit with a variable cost of $63 per unit. Annual
fixed costs are estimated to $975,000. If the appropriate discount
rate is 11.25% and the tax rate 30%, what is the project's
NPV?
options: $1,829,512
$1,880,332
$1,931,151
$1,981,971
$2,032,791
Tax rate | 30% | ||||||
Calculation of annual depreciation | |||||||
Depreciation | Year-1 | Year-2 | Year-3 | Year-4 | Year-5 | Total | |
Cost | $ 1,000,000 | $ 1,000,000 | $ 1,000,000 | $ 1,000,000 | $ 1,000,000 | ||
Dep Rate | 20.00% | 20.00% | 20.00% | 20.00% | 20.00% | ||
Depreciation | Cost * Dep rate | $ 200,000 | $ 200,000 | $ 200,000 | $ 200,000 | $ 200,000 | $ 1,000,000 |
Calculation of after-tax salvage value | |||||||
Cost of machine | $ 1,000,000 | ||||||
Depreciation | $ 1,000,000 | ||||||
WDV | Cost less accumulated depreciation | $ - | |||||
Sale price | $ - | ||||||
Profit/(Loss) | Sale price less WDV | $ - | |||||
Tax | Profit/(Loss)*tax rate | $ - | |||||
Sale price after-tax | Sale price less tax | $ - | |||||
Calculation of annual operating cash flow | |||||||
Year-1 | Year-2 | Year-3 | Year-4 | Year-5 | |||
No of units | 41,700 | 41,700 | 41,700 | 41,700 | 41,700 | ||
Selling price | $ 113 | $ 113 | $ 113 | $ 113 | $ 113 | ||
Operating ost | $ 63 | $ 63 | $ 63 | $ 63 | $ 63 | ||
Sale | $ 4,712,100 | $ 4,712,100 | $ 4,712,100 | $ 4,712,100 | $ 4,712,100 | ||
Less: Operating Cost | $ 2,627,100 | $ 2,627,100 | $ 2,627,100 | $ 2,627,100 | $ 2,627,100 | ||
Contribution | $ 2,085,000 | $ 2,085,000 | $ 2,085,000 | $ 2,085,000 | $ 2,085,000 | ||
Less: Fixed cost | $ 975,000 | $ 975,000 | $ 975,000 | $ 975,000 | $ 975,000 | ||
Less: Depreciation | $ 200,000 | $ 200,000 | $ 200,000 | $ 200,000 | $ 200,000 | ||
Profit before tax (PBT) | $ 910,000 | $ 910,000 | $ 910,000 | $ 910,000 | $ 910,000 | ||
Tax@30% | PBT*Tax rate | $ 273,000 | $ 273,000 | $ 273,000 | $ 273,000 | $ 273,000 | |
Profit After Tax (PAT) | PBT - Tax | $ 637,000 | $ 637,000 | $ 637,000 | $ 637,000 | $ 637,000 | |
Add Depreciation | PAT + Dep | $ 200,000 | $ 200,000 | $ 200,000 | $ 200,000 | $ 200,000 | |
Cash Profit after-tax | $ 837,000 | $ 837,000 | $ 837,000 | $ 837,000 | $ 837,000 | ||
Calculation of NPV | |||||||
11.25% | |||||||
Year | Capital | Working capital | Operating cash | Annual Cash flow | PV factor, 1/(1+r)^time | Present values | |
0 | $ (1,000,000) | $ (100,000) | $ (1,100,000) | 1.0000 | $ (1,100,000) | ||
1 | $ 837,000 | $ 837,000 | 0.8989 | $ 752,360 | |||
2 | $ 837,000 | $ 837,000 | 0.8080 | $ 676,278 | |||
3 | $ 837,000 | $ 837,000 | 0.7263 | $ 607,891 | |||
4 | $ 837,000 | $ 837,000 | 0.6528 | $ 546,418 | |||
5 | $ - | $ 100,000 | $ 837,000 | $ 937,000 | 0.5868 | $ 549,844 | |
Net Present Value | $ 2,032,791 | ||||||
Hence the last option is the correct answer. |