In: Accounting
Patients arrive at the emergency room of Costa Val- ley Hospital at an average of 5 per day. The demand for emergency room treatment at Costa Valley fol- lows a Poisson distribution. (a) Using Appendix C , What is the sum of these probabilities, and why is the number less than 1?
The Appendix C, compute the probabilty of exactly 0,1,2,3,4, and 5 arrivals per day. Put in excel.
Formula sheet
| A | B | C | D | E | F | G | H | I | J |
| 2 | |||||||||
| 3 | As per Poisson distribution, the probability of observing k events over time is | ||||||||
| 4 | P(X=k) = (?ke-?)/k! | ||||||||
| 5 | |||||||||
| 6 | Where ? is the average number of times the event occurs over the time period. | ||||||||
| 7 | |||||||||
| 8 | Since number of patient arriving the energency room is 5 per day, | ||||||||
| 9 | therefore ? is 5 per day and period is day. | ||||||||
| 10 | |||||||||
| 11 | ?= | 5 | per day | ||||||
| 12 | |||||||||
| 13 | As per Poisson distribution, the probability of observing k arrivals per day will be | ||||||||
| 14 | P(X=k) | = (?ke-?)/k! | |||||||
| 15 | |||||||||
| 16 | P(X=0) | = (?0e-?)/0! | |||||||
| 17 | =POISSON.DIST(0,D11,FALSE) | =POISSON.DIST(0,D11,FALSE) | |||||||
| 18 | |||||||||
| 19 | Hence probability of zero arrivals per day is | =D17 | |||||||
| 20 | Similarly probability of other number of arrivals can be calculated as below: | ||||||||
| 21 | |||||||||
| 22 | P(X=1) | = (?1e-?)/1! | |||||||
| 23 | =POISSON.DIST(1,$D$11,FALSE) | =POISSON.DIST(1,$D$11,FALSE) | |||||||
| 24 | |||||||||
| 25 | P(X=2) | = (?2e-?)/2! | |||||||
| 26 | =POISSON.DIST(2,$D$11,FALSE) | ||||||||
| 27 | |||||||||
| 28 | P(X=3) | = (?3e-?)/3! | |||||||
| 29 | =POISSON.DIST(3,$D$11,FALSE) | ||||||||
| 30 | |||||||||
| 31 | P(X=4) | = (?4e-?)/4! | |||||||
| 32 | =POISSON.DIST(4,$D$11,FALSE) | ||||||||
| 33 | |||||||||
| 34 | P(X=5) | = (?5e-?)/5! | |||||||
| 35 | =POISSON.DIST(5,$D$11,FALSE) | ||||||||
| 36 | |||||||||