Question

In: Physics

A heat engine operates between a high-temperature reservoir at 610 K and a low-temperature reservoir at...

A heat engine operates between a high-temperature reservoir at 610 K and a low-temperature reservoir at 320 K. In one cycle, the engine absorbs 6800 J of heat from the high-temperature reservoir and does 2200 J of work.

A) What is the net change in entropy as a result of this cycle?

Solutions

Expert Solution

For the case of a heat engine, the isolated system consists of the engine, the reservoir from which it extracts heat, and the outside device upon which it does work. The engine itself returns periodically to the same state, so its entropy is clearly unchanged after each cycle. The entropy change per cycle of the heat reservoir, which is at absolute temperature T1 (constant during the cycle) is given by:

The other body is a second heat reservoir at temperature T2. The entropy of the second reservoir increases by dumping some of the heat extracted from the first reservoir into it. The heat per cycle extracted from the first reservoir is q1, and the heat per cycle we reject into the second reservoir is q2. Tthe work done on the external device is W per cycle. The first law of thermodynamics tells us that:    q1 = W + q2

The total entropy change per cycle is due to the heat extracted from the first reservoir and the heat dumped into the second, and has to be positive (or zero) according to the second law of thermodynamics. So

Then,


Related Solutions

A Carnot heat engine operates between temperature levels of 600 K and 300 K with 8...
A Carnot heat engine operates between temperature levels of 600 K and 300 K with 8 MW heat transferred in the boiler. It drives a compressor, which compresses steam from 200 kPa, 200°C to 1 MPa, 500°C. If mass flow rate of the steam is 5 kg/s. determine the following: (a) The power output of the heat engine (kW). (b) The power input of the compressor (kW). (c) The efficiency of the compressor.
19 - 3 -4 A heat engine operates between a reservoir at 29°C and one at...
19 - 3 -4 A heat engine operates between a reservoir at 29°C and one at 341°C. What is the maximum efficiency possible for this engine? heat engine operates in a Carnot cycle between 88.0°C and 345°C. It absorbs 21,200 J of energy per cycle from the hot reservoir. The duration of each cycle is 3.00 s. (a) What is the mechanical power output of this engine? kW (b) How much energy does it expel in each cycle by heat?
A Carnot's engine has a low temperature reservoir at 7 °C with efficiency of 40%. It...
A Carnot's engine has a low temperature reservoir at 7 °C with efficiency of 40%. It is desired to increase the efficiency to 50%. By how many degrees should the temperature of the high temperature reservoir be increased?   
A heat engine operates between two reservoirs at T2 = 600 K and T1 = 350...
A heat engine operates between two reservoirs at T2 = 600 K and T1 = 350 K. It takes in 1 000 J of energy from the higher-temperature reservoir and performs 250 J of work. Find (a) the entropy change of the Universe delta SU for this process and (b) the work W that could have been done by an ideal Carnot engine operating between these two reservoirs. (c) Show that the difference between the amounts of work done in...
A Carnot engine operates on air between high and low pressures of 3 MPa and 100...
A Carnot engine operates on air between high and low pressures of 3 MPa and 100 kPa with a low temperature of 20°C. For a compression ratio of 15, calculate the thermal efficiency?, the MEP? , and the work output?
A heat engine operates by extracting 2,000 KJ of heat from a source at 1500 K,...
A heat engine operates by extracting 2,000 KJ of heat from a source at 1500 K, and dumping 800 of waste heat into a sink at 300 K. a) Does this engine violate any known laws of thermodynamics? b) How much work does this engine produce? c) What are the first and second law efficiencies?
Heat flows from a reservoir at 373 K to a reservoir at 273 K through a...
Heat flows from a reservoir at 373 K to a reservoir at 273 K through a 0.39-m copper [thermal conductivity 390 J/(s
NASA has created a heat engine which operates between the sun and the vacuum of the...
NASA has created a heat engine which operates between the sun and the vacuum of the space where the temperature is absolute zero. He says that his engine is nearly 100% efficient. Do you agree with the claim assuming the engine to be totally reversible? Analyse the scenario using equation for efficiency of Carnot engine and Kelvin statement to evaluate your conclusion.
A Carnot engine operates between temperatures of 200 K and 350 K. In each cycle, 4000...
A Carnot engine operates between temperatures of 200 K and 350 K. In each cycle, 4000 J of heat is added to the ideal gas. This engine works on 0.5 mols of a diatomic gas. A) Calculate the volume ratio for just the adiabatic expansion. B) Determine the compression ratio - the highest volume divided by the lowest. C) If you reversed the cycle, how much work would be necessary to pull 100 J of heat from the cold temperature...
A Carnot heat engine receives heat at 850 K and rejects the waste heat to the...
A Carnot heat engine receives heat at 850 K and rejects the waste heat to the environment at 298 K. The entire work output of the heat engine is used to drive a Carnot refrigerator that removes heat from the cooled space at -17⁰C at a rate of 450 kJ/min and rejects it to the same environment at 298 K. Determine; (a) the rate of heat supplied to the heat engine and (b) the total rate of heat rejection to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT