Question

In: Statistics and Probability

The population proportion is 0.25. What is the probability that a sample proportion will be within...

The population proportion is 0.25. What is the probability that a sample proportion will be within (plus or minus)+-0.05 of the population proportion for each of the following sample sizes? Round your answers to 4 decimal places. Use z-table.

a. n=100

b. n=200

c. n=500

d. n=1,000

e. What is the advantage of a larger sample size?

With a larger sample, there is a (lower/higher) probability will be within (plus or minus) +-0.05 of the population proportion .

Solutions

Expert Solution

a)

                       population proportion ,p=   0.25                      
                       n=   100                      
                                                  
                       std error , SE = √( p(1-p)/n ) =    0.0433                      
                                                  
                       we need to compute probability for                           
                       0.2   < p̂ <   0.3                  
                                                  
                       Z1 =( p̂1 - p )/SE= (   0.2   -   0.25   ) /    0.0433   =   -1.155
                       Z2 =( p̂2 - p )/SE= (   0.3   -   0.25   ) /    0.0433   =   1.155
P(   0.2   < p̂ <   0.3   ) =    P[( p̂1-p )/SE< Z <(p̂2-p)/SE ]    =P(    -1.155   < Z <   1.155   )          
                                                  
= P ( Z <   1.155   ) - P (    -1.155   ) =    0.8759   -   0.124   =   0.7518 (answer)

b)

                       population proportion ,p=   0.25                      
                       n=   200                      
                                                  
                       std error , SE = √( p(1-p)/n ) =    0.0306                      
                                                  
                       we need to compute probability for                           
                       0.2   < p̂ <   0.3                  
                                                  
                       Z1 =( p̂1 - p )/SE= (   0.2   -   0.25   ) /    0.0306   =   -1.633
                       Z2 =( p̂2 - p )/SE= (   0.3   -   0.25   ) /    0.0306   =   1.633
P(   0.2   < p̂ <   0.3   ) =    P[( p̂1-p )/SE< Z <(p̂2-p)/SE ]    =P(    -1.633   < Z <   1.633   )          
                                                  
= P ( Z <   1.633   ) - P (    -1.633   ) =    0.9488   -   0.051   =   0.8975(answer)   
          

c)

                       population proportion ,p=   0.25                      
                       n=   500                      
                                                  
                       std error , SE = √( p(1-p)/n ) =    0.0194                      
                                                  
                       we need to compute probability for                           
                       0.2   < p̂ <   0.3                  
                                                  
                       Z1 =( p̂1 - p )/SE= (   0.2   -   0.25   ) /    0.0194   =   -2.582
                       Z2 =( p̂2 - p )/SE= (   0.3   -   0.25   ) /    0.0194   =   2.582
P(   0.2   < p̂ <   0.3   ) =    P[( p̂1-p )/SE< Z <(p̂2-p)/SE ]    =P(    -2.582   < Z <   2.582   )          
                                                  
= P ( Z <   2.582   ) - P (    -2.582   ) =    0.9951   -   0.005   =   0.9902 (answer)

d)

                       population proportion ,p=   0.25                      
                       n=   1000                      
                                                  
                       std error , SE = √( p(1-p)/n ) =    0.0137                      
                                                  
                       we need to compute probability for                           
                       0.2   < p̂ <   0.3                  
                                                  
                       Z1 =( p̂1 - p )/SE= (   0.2   -   0.25   ) /    0.0137   =   -3.651
                       Z2 =( p̂2 - p )/SE= (   0.3   -   0.25   ) /    0.0137   =   3.651
P(   0.2   < p̂ <   0.3   ) =    P[( p̂1-p )/SE< Z <(p̂2-p)/SE ]    =P(    -3.651   < Z <   3.651   )          
                                                  
= P ( Z <   3.651   ) - P (    -3.651   ) =    0.9999   -   0.000   =   0.9997 (answer)

e)

          With a larger sample, there is a (higher) probability will be within (plus or minus) +-0.05 of the population proportion .
       


Related Solutions

The population proportion is 0.60. What is the probability that a sample proportion will be within...
The population proportion is 0.60. What is the probability that a sample proportion will be within ±0.04 of the population proportion for each of the following sample sizes? Round your answers to 4 decimal places. Use z-table. A.) n=100 B.) n= 200 C.) n=500 D.) n=1,000
The population proportion is 0.40. What is the probability that a sample proportion will be within...
The population proportion is 0.40. What is the probability that a sample proportion will be within ±0.04 of the population proportion for each of the following sample sizes? (Round your answers to 4 decimal places.) (a)n = 100 (b) n = 200 (c) n = 500 (d) n = 1,000 (e) What is the advantage of a larger sample size?
The population proportion is .60. What is the probability that a sample proportion will be within...
The population proportion is .60. What is the probability that a sample proportion will be within +/- .02 of the population proportion for each of the following sample sizes? Round your answers to 4 decimal places. n=100 n=200 n=500 n=1000
The population proportion is 0.26. What is the probability that a sample proportion will be within...
The population proportion is 0.26. What is the probability that a sample proportion will be within ±0.04 of the population proportion for each of the following sample sizes? (Round your answers to 4 decimal places.) (a) n = 100 (b) n = 200 (c) n = 500 (d) n = 1,000 (e) What is the advantage of a larger sample size? There is a higher probability σp will be within ±0.04 of the population standard deviation.We can guarantee p will...
The population proportion is 0.40. What is the probability that a sample proportion will be within...
The population proportion is 0.40. What is the probability that a sample proportion will be within ±0.04 of the population proportion for each of the following sample sizes? (Round your answers to 4 decimal places.) (a) n = 100 (b) n = 200 (c) n = 500 (d) n = 1,000 (e) What is the advantage of a larger sample size? We can guarantee p will be within ±0.04 of the population proportion p. There is a higher probability σp...
The population proportion is 0.36. What is the probability that a sample proportion will be within...
The population proportion is 0.36. What is the probability that a sample proportion will be within ±0.04 of the population proportion for each of the following sample sizes? (Round your answers to 4 decimal places.) A)n=100 B)n=200 C)n=500 D)n=1000 What is the advantage of a larger sample size?
The population proportion is 0.28. What is the probability that a sample proportion will be within...
The population proportion is 0.28. What is the probability that a sample proportion will be within ±0.04 of the population proportion for each of the following sample sizes? (Round your answers to 4 decimal places.) (a)n = 100 (b)n = 200 (c)n = 500 (d)n = 1,000
The population proportion is 0.26. What is the probability that a sample proportion will be within ±0.04 of the population proportion for each of the following sample sizes?
  The population proportion is 0.26. What is the probability that a sample proportion will be within ±0.04 of the population proportion for each of the following sample sizes? (Round your answers to 4 decimal places.) (a) n = 100 (b) n = 200 (c) n = 500 (d) n = 1,000 (e) What is the advantage of a larger sample size? There is a higher probability σp will be within ±0.04 of the population standard deviation.We can guarantee p...
The population proportion is .65 . What is the probability that a sample proportion will be...
The population proportion is .65 . What is the probability that a sample proportion will be within + or - .02 of the population proportion for each of the following sample sizes? Round your answers to 4 decimal places. Use z-table. a. n=100 b. n=200 c. n=500 d. n=1000 e. What is the advantage of a larger sample size? With a larger sample, there is a probability will be within + or - .02 of the population proportion .
What sample size is needed to estimate the population proportion within 1 percent using a 99...
What sample size is needed to estimate the population proportion within 1 percent using a 99 percent confidence level?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT