In: Statistics and Probability
The population proportion is 0.25. What is the probability that a sample proportion will be within (plus or minus)+-0.05 of the population proportion for each of the following sample sizes? Round your answers to 4 decimal places. Use z-table.
a. n=100
b. n=200
c. n=500
d. n=1,000
e. What is the advantage of a larger sample size?
With a larger sample, there is a (lower/higher) probability will be within (plus or minus) +-0.05 of the population proportion .
a)
population
proportion ,p= 0.25
n= 100
std error
, SE = √( p(1-p)/n ) = 0.0433
we need to
compute probability for
0.2 < p̂ < 0.3
Z1 =( p̂1
- p )/SE= ( 0.2 -
0.25 ) / 0.0433 =
-1.155
Z2 =( p̂2
- p )/SE= ( 0.3 -
0.25 ) / 0.0433 =
1.155
P( 0.2 < p̂ <
0.3 ) = P[( p̂1-p )/SE< Z
<(p̂2-p)/SE ] =P( -1.155
< Z < 1.155 )
= P ( Z < 1.155 ) - P (
-1.155 ) = 0.8759
- 0.124 = 0.7518
(answer)
b)
population
proportion ,p= 0.25
n= 200
std error
, SE = √( p(1-p)/n ) = 0.0306
we need to
compute probability for
0.2 < p̂ < 0.3
Z1 =( p̂1
- p )/SE= ( 0.2 -
0.25 ) / 0.0306 =
-1.633
Z2 =( p̂2
- p )/SE= ( 0.3 -
0.25 ) / 0.0306 =
1.633
P( 0.2 < p̂ <
0.3 ) = P[( p̂1-p )/SE< Z
<(p̂2-p)/SE ] =P( -1.633
< Z < 1.633 )
= P ( Z < 1.633 ) - P (
-1.633 ) = 0.9488
- 0.051 =
0.8975(answer)
c)
population
proportion ,p= 0.25
n= 500
std error
, SE = √( p(1-p)/n ) = 0.0194
we need to
compute probability for
0.2 < p̂ < 0.3
Z1 =( p̂1
- p )/SE= ( 0.2 -
0.25 ) / 0.0194 =
-2.582
Z2 =( p̂2
- p )/SE= ( 0.3 -
0.25 ) / 0.0194 =
2.582
P( 0.2 < p̂ <
0.3 ) = P[( p̂1-p )/SE< Z
<(p̂2-p)/SE ] =P( -2.582
< Z < 2.582 )
= P ( Z < 2.582 ) - P (
-2.582 ) = 0.9951
- 0.005 = 0.9902
(answer)
d)
population
proportion ,p= 0.25
n= 1000
std error
, SE = √( p(1-p)/n ) = 0.0137
we need to
compute probability for
0.2 < p̂ < 0.3
Z1 =( p̂1
- p )/SE= ( 0.2 -
0.25 ) / 0.0137 =
-3.651
Z2 =( p̂2
- p )/SE= ( 0.3 -
0.25 ) / 0.0137 =
3.651
P( 0.2 < p̂ <
0.3 ) = P[( p̂1-p )/SE< Z
<(p̂2-p)/SE ] =P( -3.651
< Z < 3.651 )
= P ( Z < 3.651 ) - P (
-3.651 ) = 0.9999
- 0.000 = 0.9997
(answer)
e)
With a larger
sample, there is a (higher) probability will be within (plus or
minus) +-0.05 of the population proportion .