Question

In: Advanced Math

3. Suppose A and B are non-empty sets of real numbers that are both bounded above....

3. Suppose A and B are non-empty sets of real numbers that are both bounded above.

(a) Prove that, if A ⊆ B, then supA ≤ supB.

(b) Prove that supA∪B = max{supA,supB}.

(c) Prove that, if A∩B 6= ∅, then supA∩B ≤ min{supA,supB}. Give an example to show that equality need not hold.

Solutions

Expert Solution


Related Solutions

Let A and B be two non empty bounded subsets of R: 1) Let A +B...
Let A and B be two non empty bounded subsets of R: 1) Let A +B = { x+y/ x ∈ A and y ∈ B} show that sup(A+B)= sup A + sup B 2) For c ≥ 0, let cA= { cx /x ∈ A} show that sup cA = c sup A hint:( show c supA is a U.B for cA and show if l < csupA then l is not U.B)
Let A and B be sets of real numbers such that A ⊂ B. Find a...
Let A and B be sets of real numbers such that A ⊂ B. Find a relation among inf A, inf B, sup A, and sup B. Let A and B be sets of real numbers and write C = A ∪ B. Find a relation among sup A, sup B, and sup C. Let A and B be sets of real numbers and write C = A ∩ B. Find a relation among sup A, sup B, and sup...
If a set K that is a subset of the real numbers is closed and bounded,...
If a set K that is a subset of the real numbers is closed and bounded, then it is compact.
Let A be a subset of all Real Numbers. Prove that A is closed and bounded...
Let A be a subset of all Real Numbers. Prove that A is closed and bounded (I.e. compact) if and only if every sequence of numbers from A has a subsequence that converges to a point in A. Given it is an if and only if I know we need to do a forward and backwards proof. For the backwards proof I was thinking of approaching it via contrapositive, but I am having a hard time writing the proof in...
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only...
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only if every infinite subset of E has a point of accumulation that belongs to E. Use Theorem 4.21: [Bolzano-Weierstrass Property] A set of real numbers is closed and bounded if and only if every sequence of points chosen from the set has a subsequence that converges to a point that belongs to E. Must use Theorem 4.21 to prove Corollary 4.22 and there should...
Suppose that a subset S of an ordered field F is not bounded above in F....
Suppose that a subset S of an ordered field F is not bounded above in F. Let T be a subset of F satisfying the property that, for each x ∈ S, there exists y ∈ T such that x ≤ y. Prove that T is not bounded above in F.
Let S be the set of natural numbers which can be written as a non-empty string...
Let S be the set of natural numbers which can be written as a non-empty string of ones followed by a non-empty string of zeroes. For example, 10, 111100 and 11100000 are all in S, but 11 and 1110011 are not in S. Prove that there exists a natural number n∈S, such that 2018 | n.
. Let U be a non-empty set. For A and B subsets of U, define the...
. Let U be a non-empty set. For A and B subsets of U, define the relation A R B if an only if A is a proper subest of B. a. Is R reflexive? Prove or explain why not. b. Is R symmetric? Prove or explain why not c. Is R transitive? Prove or explain why not. d. Is R antisymmetric? Prove or explain why not. e. Is R an equivalence relation? Prove or explain why no
A, B and C be sets. (a) Suppose that A ⊆ B and B ⊆ C....
A, B and C be sets. (a) Suppose that A ⊆ B and B ⊆ C. Does this mean that A ⊆ C? Prove your answer. Hint: to prove that A ⊆ C you must prove the implication, “for all x, if x ∈ A then x ∈ C.” (b) Suppose that A ∈ B and B ∈ C. Does this mean that A ∈ C? Give an example to prove that this does NOT always happen (and explain why...
Suppose the sets A and B have both n elements. 1. Find the number of one-to-one...
Suppose the sets A and B have both n elements. 1. Find the number of one-to-one functions from A to B. 2. Find the number of functions from A onto B. 3. Find the number of one-to-one correspondences from A to B.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT