Question

In: Statistics and Probability

Four identical six-sided dice, each with faces marked 1 to 6 are rolled 200 times. At...

Four identical six-sided dice, each with faces marked 1 to 6 are rolled 200 times. At each rolling, a record is made of the number of dies whose score on the uppermost face is even. The result is as follows.

No. Of even score, Xi Frequency, fi
0 10
1 41
2 70
3 57
4 22

a) Explain why the binomial model might describe the distribution of X.

b) Perform the ?2 -test at ? = 0.05 to test whether the sample used comes from a binomial.

Solutions

Expert Solution


Related Solutions

1. Three six-sided dice are rolled. Let X be the sum of the dice. Determine the...
1. Three six-sided dice are rolled. Let X be the sum of the dice. Determine the range of X and compute P(X = 18) and P(X ≤ 4). 2. An urn contains 5 red balls and 3 green balls. (a) Draw 3 balls with replacement. Let X be the number of red balls drawn. Determine the range of X and compute P(X = 3) and P(X 6= 1). (b) Draw 3 balls without replacement. Let Y be the number of...
Finite Math Four fair six sided dice are rolled. Given that at least two of the...
Finite Math Four fair six sided dice are rolled. Given that at least two of the dice land on an odd number, what is the probability that the sum of the result of all four dice is equal to 14?
Assume a fair six-sided dice is rolled r times. Let Y be the random variable for...
Assume a fair six-sided dice is rolled r times. Let Y be the random variable for the number of faces that appeared exactly twice. Find E[Y].
2 fair four-sided dice with faces numbered 1, 2, 3, 4 are rolled. Random variable D...
2 fair four-sided dice with faces numbered 1, 2, 3, 4 are rolled. Random variable D is the nonnegative difference |X2 −X1| of the numbers rolled on the 2 dice and Y is a Bernoulli random variable such that Y = 0 if the sum X1 +X2 is even and and Y = 1 if the sum is odd. a. Find joint probability mass function of D and Y. b. Are D and Y dependent or independent? How do you...
(5) A fair 6-sided dice is rolled twice. The fairness of the dice consists of the...
(5) A fair 6-sided dice is rolled twice. The fairness of the dice consists of the following facts: (i) no face of the dice is likelier to be rolled than any other (so a roll of a 5 and a roll of a 3 are equiprobable) and (ii) the dice has no “memory” - each roll is independent of any other. 5.1: What is the probability that you’ve first rolled a 3 and the pair of rolls sums to something...
A six sided die is rolled 4 times. The number of 2's rolled is counted as...
A six sided die is rolled 4 times. The number of 2's rolled is counted as a success. Construct a probability distribution for the random variable. # of 2's P(X) Would this be considered a binomial random variable?    What is the probability that you will roll a die 4 times and get a 2 only once? d) Is it unusual to get no 2s when rolling a die 4 times? Why or why not? Use probabilities to explain.
A six sided die is rolled 4 times. The number of 2's rolled is counted as...
A six sided die is rolled 4 times. The number of 2's rolled is counted as a success. Construct a probability distribution for the random variable. # of 2's P(X) Would this be considered a binomial random variable?    What is the probability that you will roll a die 4 times and get a 2 only once?       d Is it unusual to get no 2s when rolling a die 4 times? Why or why not? Use probabilities to explain.
Three fair, six-sided dice colored red, green and blue are rolled. Calculate each of the following...
Three fair, six-sided dice colored red, green and blue are rolled. Calculate each of the following probabilities: (a) The probability all three dice show the same face (“triples”). (b) The probability that the red die shows a larger number than the green die. (c) The probability that the red die shows a larger number than the green die and the green die shows a larger number than the blue die. (d) The probability that the sum of the pips on...
One red (6 sided) and one white (6 sided) dice is rolled. The random variable X...
One red (6 sided) and one white (6 sided) dice is rolled. The random variable X has the value 1 if the red dice shows a number max 2 and is 2 else. The random variable y has the value 1 if the white dice shows a uneven number and is 2 else. A) determine the common probability function (x, y) B) determine the marginal probability functions of x and y C) calculate e(x), e(x^2), var(x), e(y), e(y^2), and var(y)
Two six-sided dice are rolled and the sum is observed. Define events A and B as...
Two six-sided dice are rolled and the sum is observed. Define events A and B as follows: Event A: The sum is odd. Event B: The sum is less than 9. Find P(A or B) Please use formula P(A) + P(B) - P(A x B) So I can understand how to use it. Thank you.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT