In: Finance
| 1. This needs working ut the future value of ordinary annuity of | 
| Pmt.= $10 | 
| at an interest rate , r= 5%/12=0.4167% or 0.004167p.m. | 
| for n= 50*12= 600 months | 
| Using the formula for FVOA & plugging in the above values, | 
| FVOA=Pmt.*((1+r)^n-1)/r | 
| ie. 10*((1+0.4167%)^600-1)/0.4167%= | 
| 26690.18 | 
| (Answer) | 
| 2.Formula to be used is | 
| Future value of ordinary annuity | 
| FVOA=Pmt.*((1+r)^n-1)/r | 
| where, | 
| FVOA-----needs to be found out----?? | 
| Pmt.= $ 1000 at end of yrs. 1 to 17 | 
| r= interest rate, 4% or 0.04 p.a. | 
| n= no.of pmts.= 17 | 
| Using the above formula for FVOA & plugging in the above values, | 
| ie.(1000*((1+0.04)^17-1)/0.04) | 
| 23697.51 | 
| (ANSWER) | 
| Amount of money in your savings account, Immediately after your grandparents make the deposit on your 18th birthday = $ 23697.51 | 
| The mortgage amortisation table for 1st 10 pmts. Have been shown , as under ---due to space constraints-----in the answer tab | 
| No.of mth. | Mthly.pmt. | Tow. Int. | Tow. Mortgage | Mortgage Bal. | 
| 0 | 250000 | |||
| 1 | 2535.7 | 1875 | 660.67 | 249339.33 | 
| 2 | 2535.7 | 1870.045 | 665.625 | 248673.7 | 
| 3 | 2535.7 | 1865.053 | 670.6172 | 248003.09 | 
| 4 | 2535.7 | 1860.023 | 675.6468 | 247327.44 | 
| 5 | 2535.7 | 1854.956 | 680.7142 | 246646.73 | 
| 6 | 2535.7 | 1849.85 | 685.8195 | 245960.91 | 
| 7 | 2535.7 | 1844.707 | 690.9632 | 245269.94 | 
| 8 | 2535.7 | 1839.525 | 696.1454 | 244573.8 | 
| 9 | 2535.7 | 1834.303 | 701.3665 | 243872.43 | 
| 10 | 2535.7 | 1829.043 | 706.6268 | 243165.81 | 
| 4..Contract's worth today | 
| is the sum of the present values of all the amounts at 8% cost of capital | 
| ie.(36000/(1+0.08)^1)+(50000/1.08^2)+(50000/1.08^3)+(50000/1.08^4)+(60000/1.08^5)+(60000/1.08^6)= | 
| 231288.55 | 
| If all the above are saved for end of Yr. 6, | 
| we can direcly, find the Future of this single sum of $ 231288. 55 (PV at t=0) , at 8% per period , for 6 periods | 
| ie. 231288.55*(1+0.08)^6= | 
| 367025.86 | 
| 5. Amount you will be able to borrow for the car today | 
| is the Present value of the end-of monthly payments of $ 300 p.m. | 
| at r=4%/12=0.3333% or 0.0033 p.m. | 
| for n= 4 yrs.*12= 48 no.of mthly. Pmts. | 
| So, using the Present value of ordinary annuity | 
| PVOA=Pmt.*(1-(1+r)^-n)/r | 
| PVOA=300*(1-(1+0.0033)^-48)/0.0033= | 
| 13297.19 | 
| ie. The amount you will be able to borrow for the car today= $ 13297.19 | 
| 6. Using the PV of ordinary annuity formula, | 
| PVOA=Pmt.*(1-(1+r)^-n)/r | 
| where, PVOA= $ 100000 | 
| Pmt.= the quarterly pmt.--to be found out----?? | 
| r= rateof interest per quarter, ie. 9%/4=0.0225 or 2.25% per qtr. | 
| n= no.of pmt.- qtrs., ie. 5*4= 20 | 
| So, using the Present value of ordinary annuity formula, | 
| 100000=Pmt.*(1-(1+0.0225)^-20)/0.0225 | 
| The qtrly. Pmt.=100000/((1-(1+0.0225)^-20)/0.0225) | 
| 6264.21 | 
| The amortisation table is as follows | 
| No.of Qtrs. | Qtrly. Pmt. | Tow. Int. | Tow. Loan | Loan Bal. | 
| 1 | 2 | 3=Prev. 5*2.25% | 4=2-3 | 5=Prev. 5-Currrent 4 | 
| 0 | 100000 | |||
| 1 | 6264.21 | 2250 | 4014.21 | 95985.79 | 
| 2 | 6264.21 | 2159.68 | 4104.53 | 91881.26 | 
| 3 | 6264.21 | 2067.33 | 4196.88 | 87684.38 | 
| 4 | 6264.21 | 1972.90 | 4291.31 | 83393.07 | 
| 5 | 6264.21 | 1876.34 | 4387.87 | 79005.20 | 
| 6 | 6264.21 | 1777.62 | 4486.59 | 74518.61 | 
| 7 | 6264.21 | 1676.67 | 4587.54 | 69931.07 | 
| 8 | 6264.21 | 1573.45 | 4690.76 | 65240.31 | 
| 9 | 6264.21 | 1467.91 | 4796.30 | 60444.00 | 
| 10 | 6264.21 | 1359.99 | 4904.22 | 55539.78 | 
| 11 | 6264.21 | 1249.65 | 5014.56 | 50525.22 | 
| 12 | 6264.21 | 1136.82 | 5127.39 | 45397.83 | 
| 13 | 6264.21 | 1021.45 | 5242.76 | 40155.07 | 
| 14 | 6264.21 | 903.49 | 5360.72 | 34794.35 | 
| 15 | 6264.21 | 782.87 | 5481.34 | 29313.01 | 
| 16 | 6264.21 | 659.54 | 5604.67 | 23708.34 | 
| 17 | 6264.21 | 533.44 | 5730.77 | 17977.57 | 
| 18 | 6264.21 | 404.50 | 5859.71 | 12117.85 | 
| 19 | 6264.21 | 272.65 | 5991.56 | 6126.30 | 
| 20 | 6264.21 | 137.84 | 6126.37 | -0.07 | 
| 125284.20 | 25284.13 | 100000.07 |