In: Finance
1. This needs working ut the future value of ordinary annuity of |
Pmt.= $10 |
at an interest rate , r= 5%/12=0.4167% or 0.004167p.m. |
for n= 50*12= 600 months |
Using the formula for FVOA & plugging in the above values, |
FVOA=Pmt.*((1+r)^n-1)/r |
ie. 10*((1+0.4167%)^600-1)/0.4167%= |
26690.18 |
(Answer) |
2.Formula to be used is |
Future value of ordinary annuity |
FVOA=Pmt.*((1+r)^n-1)/r |
where, |
FVOA-----needs to be found out----?? |
Pmt.= $ 1000 at end of yrs. 1 to 17 |
r= interest rate, 4% or 0.04 p.a. |
n= no.of pmts.= 17 |
Using the above formula for FVOA & plugging in the above values, |
ie.(1000*((1+0.04)^17-1)/0.04) |
23697.51 |
(ANSWER) |
Amount of money in your savings account, Immediately after your grandparents make the deposit on your 18th birthday = $ 23697.51 |
The mortgage amortisation table for 1st 10 pmts. Have been shown , as under ---due to space constraints-----in the answer tab |
No.of mth. | Mthly.pmt. | Tow. Int. | Tow. Mortgage | Mortgage Bal. |
0 | 250000 | |||
1 | 2535.7 | 1875 | 660.67 | 249339.33 |
2 | 2535.7 | 1870.045 | 665.625 | 248673.7 |
3 | 2535.7 | 1865.053 | 670.6172 | 248003.09 |
4 | 2535.7 | 1860.023 | 675.6468 | 247327.44 |
5 | 2535.7 | 1854.956 | 680.7142 | 246646.73 |
6 | 2535.7 | 1849.85 | 685.8195 | 245960.91 |
7 | 2535.7 | 1844.707 | 690.9632 | 245269.94 |
8 | 2535.7 | 1839.525 | 696.1454 | 244573.8 |
9 | 2535.7 | 1834.303 | 701.3665 | 243872.43 |
10 | 2535.7 | 1829.043 | 706.6268 | 243165.81 |
4..Contract's worth today |
is the sum of the present values of all the amounts at 8% cost of capital |
ie.(36000/(1+0.08)^1)+(50000/1.08^2)+(50000/1.08^3)+(50000/1.08^4)+(60000/1.08^5)+(60000/1.08^6)= |
231288.55 |
If all the above are saved for end of Yr. 6, |
we can direcly, find the Future of this single sum of $ 231288. 55 (PV at t=0) , at 8% per period , for 6 periods |
ie. 231288.55*(1+0.08)^6= |
367025.86 |
5. Amount you will be able to borrow for the car today |
is the Present value of the end-of monthly payments of $ 300 p.m. |
at r=4%/12=0.3333% or 0.0033 p.m. |
for n= 4 yrs.*12= 48 no.of mthly. Pmts. |
So, using the Present value of ordinary annuity |
PVOA=Pmt.*(1-(1+r)^-n)/r |
PVOA=300*(1-(1+0.0033)^-48)/0.0033= |
13297.19 |
ie. The amount you will be able to borrow for the car today= $ 13297.19 |
6. Using the PV of ordinary annuity formula, |
PVOA=Pmt.*(1-(1+r)^-n)/r |
where, PVOA= $ 100000 |
Pmt.= the quarterly pmt.--to be found out----?? |
r= rateof interest per quarter, ie. 9%/4=0.0225 or 2.25% per qtr. |
n= no.of pmt.- qtrs., ie. 5*4= 20 |
So, using the Present value of ordinary annuity formula, |
100000=Pmt.*(1-(1+0.0225)^-20)/0.0225 |
The qtrly. Pmt.=100000/((1-(1+0.0225)^-20)/0.0225) |
6264.21 |
The amortisation table is as follows |
No.of Qtrs. | Qtrly. Pmt. | Tow. Int. | Tow. Loan | Loan Bal. |
1 | 2 | 3=Prev. 5*2.25% | 4=2-3 | 5=Prev. 5-Currrent 4 |
0 | 100000 | |||
1 | 6264.21 | 2250 | 4014.21 | 95985.79 |
2 | 6264.21 | 2159.68 | 4104.53 | 91881.26 |
3 | 6264.21 | 2067.33 | 4196.88 | 87684.38 |
4 | 6264.21 | 1972.90 | 4291.31 | 83393.07 |
5 | 6264.21 | 1876.34 | 4387.87 | 79005.20 |
6 | 6264.21 | 1777.62 | 4486.59 | 74518.61 |
7 | 6264.21 | 1676.67 | 4587.54 | 69931.07 |
8 | 6264.21 | 1573.45 | 4690.76 | 65240.31 |
9 | 6264.21 | 1467.91 | 4796.30 | 60444.00 |
10 | 6264.21 | 1359.99 | 4904.22 | 55539.78 |
11 | 6264.21 | 1249.65 | 5014.56 | 50525.22 |
12 | 6264.21 | 1136.82 | 5127.39 | 45397.83 |
13 | 6264.21 | 1021.45 | 5242.76 | 40155.07 |
14 | 6264.21 | 903.49 | 5360.72 | 34794.35 |
15 | 6264.21 | 782.87 | 5481.34 | 29313.01 |
16 | 6264.21 | 659.54 | 5604.67 | 23708.34 |
17 | 6264.21 | 533.44 | 5730.77 | 17977.57 |
18 | 6264.21 | 404.50 | 5859.71 | 12117.85 |
19 | 6264.21 | 272.65 | 5991.56 | 6126.30 |
20 | 6264.21 | 137.84 | 6126.37 | -0.07 |
125284.20 | 25284.13 | 100000.07 |