Question

In: Physics

A twin-blade aircraft propeller has a mass of 30.0 kg and a radius of 1.50 m....

A twin-blade aircraft propeller has a mass of 30.0 kg and a radius of 1.50 m. When the aircraft is flying at its top speed of 162 knots the tips of the propeller blades may not move faster than 300 m/s through the air (otherwise they would be travelling supersonically). Determine: 3.1 the maximum safe angular speed of the propeller in rpm; 3.2 the torque the engine must exert on the propeller in order for it to reach this maximum angular speed within 30.0 s of start-up (assuming the angular acceleration remains constant).

Solutions

Expert Solution


Related Solutions

A uniform disk with radius 0.310 m and mass 30.0 kg rotates in a horizontal plane...
A uniform disk with radius 0.310 m and mass 30.0 kg rotates in a horizontal plane on a frictionless vertical axle that passes through the center of the disk. The angle through which the disk has turned varies with time according to ?(t)=( 1.10 rad/s)t+( 6.90 rad/s2 )t2 What is the resultant linear acceleration of a point on the rim of the disk at the instant when the disk has turned through 0.100 rev ?
The propeller of a plane has a rotational inertia of 890 kg*m2. Each blade has a...
The propeller of a plane has a rotational inertia of 890 kg*m2. Each blade has a length of 3.3 m. The propellor starts from rest and reaches a final angular speed of 16 rad/s in only 8 seconds. a) What was the angular acceleration of the propeller? b) What was the net torque exerted on the propeller while it was accelerating? c) When t = 4 s, what was ω for the propeller? d) When t = 4 s, through...
A uniform helicopter rotor blade is 8.97 m long, has a mass of 104 kg, and...
A uniform helicopter rotor blade is 8.97 m long, has a mass of 104 kg, and is attached to the rotor axle by a single bolt. (a) What is the magnitude of the force on the bolt from the axle when the rotor is turning at 329 rev/min? (Hint: For this calculation the blade can be considered to be a point mass at its center of mass. Why?) (b) Calculate the torque that must be applied to the rotor to...
A wheel has a mass of 0.5 kg and a radius of 0.25 m. It rolls...
A wheel has a mass of 0.5 kg and a radius of 0.25 m. It rolls such that the center of mass of the wheel has a velocity of 10 m/s. a) Calculate the angular velocity of the wheel. b) Calculate the translational kinetic energy of the wheel. c) Calculate the rotational kinetic energy of the wheel. d) Calculate the total kinetic energy of the wheel by summing the two kinetic energies
A solid cylinder has a mass of 2.50 kg and a radius of 0.100 m. It...
A solid cylinder has a mass of 2.50 kg and a radius of 0.100 m. It is released from rest on a ramp tilted at 8.00° from horizontal, and it rolls without slipping down the ramp until it has moved a vertical distance of 0.350 m. What is the angular speed of the cylinder when it reaches the bottom? What is the magnitude of the angular momentum of the cylinder when it reaches the bottom?
An airplane propeller is 1.99 m in length (from tip to tip) with mass 93.0 kg...
An airplane propeller is 1.99 m in length (from tip to tip) with mass 93.0 kg and is rotating at 2500 rpm (rev/min) about an axis through its center. You can model the propeller as a slender rod. What is its rotational kinetic energy? Suppose that, due to weight constraints, you had to reduce the propeller's mass to 75.0% of its original mass, but you still needed to keep the same size and kinetic energy. What would its angular speed...
Calculate the mass of the sun from the radius of the earth's orbit (1.50×1011 m), the...
Calculate the mass of the sun from the radius of the earth's orbit (1.50×1011 m), the earth's period in its orbit, and the gravitational constant G. What is the density of the sun ? (The sun's radius is 6.96×108 m). Notice how it compares with the density of the earth.
Uranus has a mass of 8.68 1025 kg and a radius of 2.56 107 m. Assume...
Uranus has a mass of 8.68 1025 kg and a radius of 2.56 107 m. Assume it is a uniform solid sphere. The distance of Uranus from the Sun is 2.87 1012 m. (Assume Uranus completes a single rotation in 17.3 hours and orbits the Sun once every 3.08 104 Earth days.) (a) What is the rotational kinetic energy of Uranus on its axis? (b) What is the rotational kinetic energy of Uranus in its orbit around the Sun?
A disk with mass m = 11.8 kg and radius R = 0.31 m begins at...
A disk with mass m = 11.8 kg and radius R = 0.31 m begins at rest and accelerates uniformly for t = 17.2 s, to a final angular speed of ω = 31 rad/s. 1.What is the angular acceleration of the disk? 2. What is the angular displacement over the 17.2 s? 3. What is the moment of inertia of the disk? 4. What is the change in rotational energy of the disk?
A 50.0 kg child stands at the rim of a merry-go-round of radius 1.50 m, rotating...
A 50.0 kg child stands at the rim of a merry-go-round of radius 1.50 m, rotating with an angular speed of 2.50 rad/s. (a) What is the child's centripetal acceleration? m/s2 (b) What is the minimum force between her feet and the floor of the merry-go-round that is required to keep her in the circular path? N (c) What minimum coefficient of static friction is required? Is the answer you found reasonable? In other words, is she likely to be...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT