In: Statistics and Probability
USING EXCEL
Elly's Hotdog Emporium is famous for its chilidogs. Elly's latest sales indicate that 30% of the customers order their chilidogs with hot peppers.
Suppose 15 customers are selected at random. What is the probability that between 2 and 6 inclusive will ask for hot pe
Hello Sir/ Mam
Using excel (formulas indicated)
| p | 0.3 | |
| n | 15 | |
| x | ||
| x | P(x) | |
| 0 | 0.00474756150994299 | =COMBIN($D$28,B31)*($D$27^B31)*((1-$D$27)^($D$28-B31)) | 
| 1 | 0.030520038278205 | =COMBIN($D$28,B32)*($D$27^B32)*((1-$D$27)^($D$28-B32)) | 
| 2 | 0.0915601148346149 | =COMBIN($D$28,B33)*($D$27^B33)*((1-$D$27)^($D$28-B33)) | 
| 3 | 0.170040213264285 | =COMBIN($D$28,B34)*($D$27^B34)*((1-$D$27)^($D$28-B34)) | 
| 4 | 0.218623131339795 | =COMBIN($D$28,B35)*($D$27^B35)*((1-$D$27)^($D$28-B35)) | 
| 5 | 0.206130380977521 | =COMBIN($D$28,B36)*($D$27^B36)*((1-$D$27)^($D$28-B36)) | 
| 6 | 0.147235986412515 | =COMBIN($D$28,B37)*($D$27^B37)*((1-$D$27)^($D$28-B37)) | 
| 7 | 0.0811300333293449 | =COMBIN($D$28,B38)*($D$27^B38)*((1-$D$27)^($D$28-B38)) | 
| 8 | 0.034770014284005 | =COMBIN($D$28,B39)*($D$27^B39)*((1-$D$27)^($D$28-B39)) | 
| 9 | 0.011590004761335 | =COMBIN($D$28,B40)*($D$27^B40)*((1-$D$27)^($D$28-B40)) | 
| 10 | 0.002980286938629 | =COMBIN($D$28,B41)*($D$27^B41)*((1-$D$27)^($D$28-B41)) | 
| 11 | 0.000580575377655 | =COMBIN($D$28,B42)*($D$27^B42)*((1-$D$27)^($D$28-B42)) | 
| 12 | 0.000082939339665 | =COMBIN($D$28,B43)*($D$27^B43)*((1-$D$27)^($D$28-B43)) | 
| 13 | 0.000008202791835 | =COMBIN($D$28,B44)*($D$27^B44)*((1-$D$27)^($D$28-B44)) | 
| 14 | 0.000000502211745 | =COMBIN($D$28,B45)*($D$27^B45)*((1-$D$27)^($D$28-B45)) | 
| 15 | 0.000000014348907 | =COMBIN($D$28,B46)*($D$27^B46)*((1-$D$27)^($D$28-B46)) | 
Hence,

I hope this solves your doubt.
Do give a thumbs up if you find this helpful.