Question

In: Economics

A utility-maximizing consumer believes two goods are Perfect Substitutes u(x, y) = 3x + 4y. She...

A utility-maximizing consumer believes two goods are Perfect Substitutes u(x, y) = 3x + 4y. She pays pY = 2 and pX = 1. Her income is m = 24. Next month the price of good x will rise to pX = 3. Round your final answers to 3 decimal places.

What is the EV, CV and Approximate ΔCS?

Solutions

Expert Solution


Related Solutions

A utility-maximizing consumer who consumes quantity x and y of two goods has a quadratic utility...
A utility-maximizing consumer who consumes quantity x and y of two goods has a quadratic utility function given by Ux,y=x+y-0.05x2-0.05y2 subject to 2x+5y=128 Where $128 is the consumer’s budget and the prices of the two goods are, respectively, 2 and 5. Assuming marginal utilities Ux, Uy > 0, a. Find the quantity x and y that maximize the utility function. b. Using bordered Hessian, check utility for a maximum. c. What is the maximum utility of the consumer?
A utility-maximizing consumer who consumes quantity x and y of two goods has a quadratic utility...
A utility-maximizing consumer who consumes quantity x and y of two goods has a quadratic utility function given by Ux,y=x+y-0.05x2-0.05y2 subject to 2x+5y=128 Where $128 is the consumer’s budget and the prices of the two goods are, respectively, 2 and 5. Assuming marginal utilities Ux, Uy > 0, a. Find the quantity x and y that maximize the utility function. b. Using bordered Hessian, check utility for a maximum. c. What is the maximum utility of the consumer?
A utility-maximizing consumer who consumes quantity x and y of two goods has a quadratic utility...
A utility-maximizing consumer who consumes quantity x and y of two goods has a quadratic utility function given by Ux,y=x+y-0.05x2-0.05y2 subject to 2x+5y=128 Where $128 is the consumer’s budget and the prices of the two goods are, respectively, 2 and 5. Assuming marginal utilities Ux, Uy > 0, a. Find the quantity x and y that maximize the utility function. b. Using bordered Hessian, check utility for a maximum. c. What is the maximum utility of the consumer?
A utility-maximizing consumer who consumes quantity x and y of two goods has a quadratic utility...
A utility-maximizing consumer who consumes quantity x and y of two goods has a quadratic utility function given by Ux,y=x+y-0.05x2-0.05y2 subject to 2x+5y=128 Where $128 is the consumer’s budget and the prices of the two goods are, respectively, 2 and 5. Assuming marginal utilities Ux, Uy > 0, a. Find the quantity x and y that maximize the utility function. b. Using bordered Hessian, check utility for a maximum. c. What is the maximum utility of the consumer?
A consumer purchases two goods, x and y and has utility function U(x; y) = ln(x)...
A consumer purchases two goods, x and y and has utility function U(x; y) = ln(x) + 3y. For this utility function MUx =1/x and MUy = 3. The price of x is px = 4 and the price of y is py = 2. The consumer has M units of income to spend on the two goods and wishes to maximize utility, given the budget. Draw the budget line for this consumer when M=50 and the budget line when...
A consumer has his preferences represented by the utility function U(x,y) = min {5x + 4y,...
A consumer has his preferences represented by the utility function U(x,y) = min {5x + 4y, 4x + 7y} if x is on the horizontal axis and y is on the vertical axis, what is the slope of his indifference curve at the point (10,10) a. -4/7 b. -5/4 c. -4/5 d. -7/4 e. -5/7
A consumes two goods, x and y. A ’s utility function is given by u(x, y)...
A consumes two goods, x and y. A ’s utility function is given by u(x, y) = x 1/2y 1/2 The price of x is p and the price of y is 1. A has an income of M. (a) Derive A ’s demand functions for x and y. (b) Suppose M = 72 and p falls from 9 to 4. Calculate the income and substitution effects of the price change. (c) Calculate the compensating variation of the price change....
Suppose that the utility function of a consumer is U(x,y) = x ¼y ¾, where x...
Suppose that the utility function of a consumer is U(x,y) = x ¼y ¾, where x and y are the quantities of the good X and good Y consumed, respectively. The consumer's income is 400. (a) What is the demanded bundle when the price of good X is 10 and the price of good Y is 10? (b) Redo part (a) when the price of good X is doubled? (c) Redo part (a) when the price of good Y is...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has an income denoted by I which is devoted to goods X and Y. The prices of goods X and Y are denoted PX and PY. a. Find the consumer’s marginal utility of X (MUX) and marginal utility of Y (MUY). b. Find the consumer’s marginal rate of substitution (MRS). c. Derive the consumer's demand equations for both goods as functions of the variables PX,...
A consumer can choose between goods X and Y. The consumer's utility function is: U=5X2Y2 Use...
A consumer can choose between goods X and Y. The consumer's utility function is: U=5X2Y2 Use following notation, as we have in class: Price of X = PX, Price of Y = PY, Income = I, the Lagrange multiplier = λ If PX= 20, PY = 5, and I = 400, what is the optimal amount of X that will maximize the consumer's utility subject to these prices and income? what is the optimal amount of Y that will maximize...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT