In: Statistics and Probability
The mean number of students who went to examinations is 450 students with a standard deviation of 75 students. The distribution of the number of students is normal.
i)
X ~ N ( µ = 450 , σ = 75 )
P ( X < x ) = 15% = 0.15
To find the value of x
Looking for the probability 0.15 in standard normal table to
calculate Z score = -1.0364
Z = ( X - µ ) / σ
-1.0364 = ( X - 450 ) / 75
X = 372.27
P ( X < 372.27 ) = 0.15
ii)
X ~ N ( µ = 450 , σ = 75 )
P ( X < 430 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 430 - 450 ) / 75
Z = -0.2667
P ( ( X - µ ) / σ ) < ( 430 - 450 ) / 75 )
P ( X < 430 ) = P ( Z < -0.2667 )
P ( X < 430 ) = 0.3949
iii)
X ~ N ( µ = 450 , σ = 75 )
P ( X > 400 ) = 1 - P ( X < 400 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 400 - 450 ) / 75
Z = -0.6667
P ( ( X - µ ) / σ ) > ( 400 - 450 ) / 75 )
P ( Z > -0.6667 )
P ( X > 400 ) = 1 - P ( Z < -0.6667 )
P ( X > 400 ) = 1 - 0.2525
P ( X > 400 ) = 0.7475
iv)
X ~ N ( µ = 450 , σ = 75 )
P ( 452 < X < 463 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 452 - 450 ) / 75
Z = 0.0267
Z = ( 463 - 450 ) / 75
Z = 0.1733
P ( 0.03 < Z < 0.17 )
P ( 452 < X < 463 ) = P ( Z < 0.17 ) - P ( Z < 0.03
)
P ( 452 < X < 463 ) = 0.5688 - 0.5107
P ( 452 < X < 463 ) = 0.0581