Question

In: Statistics and Probability

Suppose that you tossed a coin 1000 times in which 560 of the tosses were heads...

Suppose that you tossed a coin 1000 times in which 560 of the tosses were heads while 440 were tails. Can we reasonably say that the coin is fair? Justify your answer. Hint: use the concept of p-values. To evaluate the resulting probability, use an approximation by way of the CLT. Why does this offer a good approximation? Use a z-table or R to evaluate the N(0,1) cdf.

Solutions

Expert Solution

Let P be the true proportion for number of heads.

The null and alternate hypothesis are:

H0: i.e. coin is fair

Ha: i.e. coin isn't fair

Using CLT, we know

The test statistic value is given by:

Since this is a two-tailed test, so the p-value is given by:

Since p-value is less than 0.05, so we have sufficient evidence to reject the null hypothesis
H0 at 5% level of significance.

Thus we can say that the coin isn't fair.


Related Solutions

STAT 2332 #1. A coin is tossed 1000 times, it lands heads 516 heads, is the...
STAT 2332 #1. A coin is tossed 1000 times, it lands heads 516 heads, is the coin fair? (a) Set up null and alternative hypotheses (two tailed). (b) Compute z and p. (c) State your conclusion. #2. A coin is tossed 10,000 times, it lands heads 5160 heads, is the coin fair? (a) Set up null and alternative hypotheses (two tailed). (b) Compute z and p. (c) State your conclusion.
A coin is tossed 1000 times and 540 heads appear. At ΅= 0.05, test the claim...
A coin is tossed 1000 times and 540 heads appear. At ΅= 0.05, test the claim that this is nota biased coin.
A coin is tossed with P(heads) = p. a) What is the expected number of tosses...
A coin is tossed with P(heads) = p. a) What is the expected number of tosses required to get n heads? b) Determine the variance of the number of tosses needed to get the first head. c) Determine the variance of the number of tosses needed to get n heads.
A coin is tossed with P(heads) = p. a) What is the expected number of tosses...
A coin is tossed with P(heads) = p. a) What is the expected number of tosses required to get n heads? b) Determine the variance of the number of tosses needed to get the first head. c) Determine the variance of the number of tosses needed to get n heads.
Suppose a coin is tossed 100 times and the number of heads are recorded. We want...
Suppose a coin is tossed 100 times and the number of heads are recorded. We want to test whether the coin is fair. Again, a coin is called fair if there is a fifty-fifty chance that the outcome is a head or a tail. We reject the null hypothesis if the number of heads is larger than 55 or smaller than 45. Write your H_0 and H_A in terms of the probability of heads, say p. Find the Type I...
sean tosses a coin 40 times and gets 15 heads while Micah tosses a coin 30...
sean tosses a coin 40 times and gets 15 heads while Micah tosses a coin 30 times and gets 16 heads. Suppose that the outcomes of sean's coin tosses are iid random variable with probability p1 of getting heads on each toss while Micah’s outcomes are also iid with a potentially different probability p2 of getting heads. (1) Calculate the maximum likelihood and method of moments estimators of p1. (2) Show that the MLE of p1 is an MVUE for...
A coin is tossed 400 times, landing heads up 219 times. Is the coin fair?
A coin is tossed 400 times, landing heads up 219 times. Is the coin fair?
a) A coin is tossed 4 times. Let X be the number of Heads on the...
a) A coin is tossed 4 times. Let X be the number of Heads on the first 3 tosses and Y be the number of Heads on the last three tossed. Find the joint probabilities pij = P(X = i, Y = j) for all relevant i and j. Find the marginal probabilities pi+ and p+j for all relevant i and j. b) Find the value of A that would make the function Af(x, y) a PDF. Where f(x, y)...
a) Three fair dice are tossed 1000 times. Create a simulation of these 1000 tosses, and...
a) Three fair dice are tossed 1000 times. Create a simulation of these 1000 tosses, and compute the probability that the sum of the three dice 7 or less. (Hint: randbtween) b) Mike and Monica arrive randomly at the golf course between 8am and 10am. What is the probability they arrive within 30min of each other? (Hint: 120*rand() ?)
Five coins were simultaneously tossed 1000 times and at each toss, the number of heads was...
Five coins were simultaneously tossed 1000 times and at each toss, the number of heads was observed. The number of tosses during which 0, 1, 2, 4, and 5 heads were obtained are shown in the table below. Convert the given frequency distribution to probability distribution find the expected value.            Number of heads per toss:             0              1          2          3          4          5            Number of tosses               :          38         144      342      287     164           25
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT