Question

In: Statistics and Probability

The regression line, standard error, and Sxx for the data set are given below. The predictor...

The regression line, standard error, and Sxx for the data set are given below. The predictor value is x=2. Use the information to do parts (a) through (d).

Y(hat)=2.00+0.00x

Se=2.64575

Sxx= 5

x values: 3,4,1,2

y values: 2,3,4,-1

Part A) Determine a point estimate for the conditional mean of the response variable corresponding to the specified value of the predictor variable.

Part B) Find a 90% confidence interval for the response variable corresponding to the specified value of the predictor variable.

Part C) Determine the predicted value of the response variable corresponding to the specified value of the predictor variable.

Part D) Find a 90% prediction interval for the value of the response variable corresponding to the specified value of the predictor variable.

Solutions

Expert Solution

a)

Predicted Y at X=   2   is                  
Ŷ =   2.000   +   0.000   *   2   =   2.000

b)

X Value=   2                      
Confidence Level=   90%                      
                          
                          
Sample Size , n=   4                      
Degrees of Freedom,df=n-2 =   2                      
critical t Value=tα/2 =   2.920   [excel function: =t.inv.2t(α/2,df) ]                  
                          
X̅ =    2.50                      
Σ(x-x̅)² =Sxx   5.0                      
Standard Error of the Estimate,Se=   2.646                      
                          
Predicted Y at X=   2   is                  
Ŷ =   2.000   +   0.000   *   2   =   2.000
                          
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =    1.449                      
margin of error,E=t*Std error=t* S(ŷ) =   2.9200   *   1.4491   =   4.2315      
                          
Confidence Lower Limit=Ŷ +E =    2.000   -   4.2315   =   -2.23      
Confidence Upper Limit=Ŷ +E =   2.000   +   4.2315   =   6.23      

c)

Predicted Y at X=   2   is                  
Ŷ =   2.000   +   0.000   *   2   =   2.000

d)

For Individual Response Y                  
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =   3.0166              
margin of error,E=t*std error=t*S(ŷ)=    2.9200   *   3.02   =   8.8085
                  
Prediction Interval Lower Limit=Ŷ -E =   2.000   -   8.81   =   -6.8085
Prediction Interval Upper Limit=Ŷ +E =   2.000   +   8.81   =   10.8085


Related Solutions

Based on the below data what will be the value of standard error? Regression Statistics Multiple...
Based on the below data what will be the value of standard error? Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 8 ANOVA df SS MS F Regression 1 33 33.0 16.5 Residual 6 12 2.0 Total 7 Coefficients Standard Error t Stat P-value Intercept 9 31.274666 3.984284 0.007248 Advertising (thousands of $) 24 6.19330674 1.610802 0.158349 Submit Answer format: Number: Round to: 2 decimal places.
A student uses the given set of data to compute a least‑squares regression line and a...
A student uses the given set of data to compute a least‑squares regression line and a correlation coefficient: ? 0.7 0.8 1.7 1.7 1.3 2.6 8.0 ? 1 2 2 1 0 1 5 The student claims that the regression line does an excellent job of explaining the relationship between the explanatory variable ? and the response variable ? . Is the student correct? a. Yes, because ?2=0.74 means that 74% of the variation in ? is explained by the...
What is Standard Error in a Regression?
  What is Standard Error in a Regression? The average deviation from the mean The average deviation of the correlation coefficient to the R2 value The average deviation of X to Y values The average deviation of the predicted scores and the actual scores
Given the data set below, calculate the standard deviation standard deviation using the defining formula standard...
Given the data set below, calculate the standard deviation standard deviation using the defining formula standard deviation using the computing formula 8,41,24,19,15,12,47,12,33
Given the data set below, calculate the range, mean, variance, and standard deviation
Given the data set below, calculate the range, mean, variance, and standard deviation. 19,  33,  8,  29,  18,  5, 10, 14,  25 Range = Mean = Variance = Standard deviation =
Differentiate Standard error of regression (Sy) Standard error of slope (Sm) Standard error of y-intercept (Sb)
Differentiate Standard error of regression (Sy) Standard error of slope (Sm) Standard error of y-intercept (Sb)
The standard project is to use multiple regression analysis to analyze a data set. The data...
The standard project is to use multiple regression analysis to analyze a data set. The data set is a study of student persistent enrolling in the next semester based on Gender, Age, GPA, a 22 questionnaire on self-efficacy, and student enrollment status. The educational researcher wants to study the relationship between student enrollment status as it relates to gender, age, GPA, and the total response to a 22 questionnaire survey. a. The estimated multiple regression analysis equation. b. Does the...
Given the data set below, construct a 95% confidence interval for the standard deviation. 98 71...
Given the data set below, construct a 95% confidence interval for the standard deviation. 98 71 124 116 118 131 102 93 95 99
The regression equation is always the best predictor of a y-value for a given value of...
The regression equation is always the best predictor of a y-value for a given value of x. Defend your answer.
Find the equation of the regression line for the given data. Then construct a scatter plot...
Find the equation of the regression line for the given data. Then construct a scatter plot of the data and draw the regression line. (The pair of variables have a significant correlation.) Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. The table below shows the heights (in feet) and the number of stories of six notable buildings in a city. Height : 772, 628, 518, 508, 496, 483, y:...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT