In: Economics
In this exercise, you will investigate the relationship between a worker's age and earnings. (Generally, older workers have more job experience, leading to higher productivity and earnings.) The following table contains data for full-time, full-years workers, age 25-34, with a high school diploma or B.A./B.S. as their highest degree. Download the data from the table by clicking the download table icon A detailed description of the variables used in the data set is available here Use a statistical package of your choice to answer the following questions. Suppose you are interested in estimating the following model
Ahe = β0 + β1Age + u
Run a regression of average hourly earnings (AHE) on age (Age).
Run a regression of average hourly earnings (AHE) on age (Age) using the sample for which the indicator variable college = 0.
What is the estimated intercept β0 & β1?
The estimated intercept β0 is ________
The estimated intercept β1 is ________
College Distance | ||
Ahe | Age | College |
12.6102 | 34 | 1 |
17.2572 | 25 | 1 |
4.0307 | 32 | 1 |
26.146 | 33 | 1 |
33.352 | 27 | 1 |
8.9155 | 27 | 1 |
64.6712 | 26 | 1 |
9.3487 | 26 | 1 |
44.0298 | 30 | 1 |
8.1751 | 31 | 1 |
24.4249 | 26 | 1 |
16.0365 | 31 | 1 |
31.7643 | 26 | 1 |
32.8926 | 33 | 1 |
25.9257 | 29 | 1 |
26.8499 | 30 | 1 |
22.6707 | 30 | 1 |
14.4586 | 27 | 1 |
15.6864 | 27 | 1 |
55.2604 | 32 | 1 |
27.1889 | 29 | 1 |
38.0335 | 31 | 1 |
28.1463 | 26 | 1 |
14.3612 | 31 | 1 |
15.8709 | 30 | 1 |
29.2048 | 28 | 1 |
45.106 | 34 | 1 |
23.4888 | 27 | 1 |
18.44 | 33 | 1 |
27.2437 | 25 | 1 |
39.4441 | 27 | 1 |
14.2008 | 30 | 1 |
22.896 | 33 | 1 |
31.9338 | 27 | 1 |
17.7686 | 28 | 1 |
25.2584 | 27 | 1 |
36.9844 | 33 | 1 |
17.4559 | 32 | 1 |
24.827 | 31 | 1 |
25.9448 | 34 | 1 |
9.3946 | 31 | 1 |
24.5044 | 34 | 1 |
36.0618 | 29 | 0 |
13.5713 | 28 | 0 |
8.0061 | 26 | 0 |
20.0158 | 29 | 0 |
45.4987 | 33 | 0 |
7.2858 | 27 | 0 |
11.9818 | 33 | 0 |
18.1214 | 25 | 0 |
7.6007 | 32 | 0 |
12.5471 | 29 | 0 |
16.9855 | 28 | 0 |
15.1409 | 29 | 0 |
6.7083 | 27 | 0 |
22.2952 | 33 | 0 |
12.148 | 30 | 0 |
8.2473 | 28 | 0 |
15.0424 | 27 | 0 |
6.7796 | 25 | 0 |
16.8188 | 25 | 0 |
14.8258 | 30 | 0 |
15.7019 | 25 | 0 |
2.6229 | 30 | 0 |
23.8469 | 31 | 0 |
12.2451 | 31 | 0 |
21.8335 | 33 | 0 |
15.4616 | 26 | 0 |
32.2909 | 29 | 0 |
10.7363 | 28 | 0 |
11.2132 | 34 | 0 |
14.9038 | 28 | 0 |
24.3312 | 29 | 0 |
12.9998 | 30 | 0 |
17.0164 | 26 | 0 |
9.7228 | 25 | 0 |
10.2584 | 28 | 0 |
18.4956 | 29 | 0 |
11.1666 | 33 | 0 |
18.4905 | 29 | 0 |
15.8924 | 34 | 0 |
17.4147 | 29 | 0 |
17.99 | 29 | 0 |
12.807 | 25 | 0 |
9.8222 | 29 | 0 |
4.0649 | 25 | 0 |
7.177 | 25 | 0 |
9.2321 | 31 | 0 |
19.2232 | 30 | 0 |
12.0358 | 25 | 0 |
22.8428 | 29 | 0 |
20.2687 | 26 | 0 |
14.0444 | 30 | 0 |
8.7165 | 25 | 0 |
31.0064 | 33 | 0 |
7.6344 | 26 | 0 |
16.8722 | 31 | 0 |
12.7747 | 28 | 0 |
23.2383 | 30 | 0 |
16.8357 | 30 | 0 |
Ahe^ = β0 + β1Age
The regression output of average hourly earnings (AHE) on age (Age) is:
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.185942625 | |||||||
R Square | 0.03457466 | |||||||
Adjusted R Square | 0.024723381 | |||||||
Standard Error | 10.93882456 | |||||||
Observations | 100 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 419.9587292 | 419.9587292 | 3.50966204 | 0.063991825 | |||
Residual | 98 | 11726.47252 | 119.6578828 | |||||
Total | 99 | 12146.43125 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -2.278743498 | 11.68247745 | -0.195056529 | 0.845752519 | -25.46223979 | 20.9047528 | -25.46223979 | 20.9047528 |
Age | 0.748794072 | 0.399695951 | 1.873409203 | 0.063991825 | -0.044389534 | 1.541977678 | -0.044389534 | 1.541977678 |
Ahe^ = -2.2787 + 0.7488*Age
The estimated intercept β0 is -2.2787
The estimated intercept β1 is 0.7488
The regression output of average hourly earnings (AHE) on age (Age) using the sample for which the indicator variable college = 0 is:
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.348240043 | |||||
R Square | 0.121271127 | |||||
Adjusted R Square | 0.10557954 | |||||
Standard Error | 7.342102804 | |||||
Observations | 58 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 416.6117057 | 416.6117 | 7.728417 | 0.00738867 | |
Residual | 56 | 3018.762521 | 53.90647 | |||
Total | 57 | 3435.374227 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -13.86590425 | 10.60662849 | -1.30729 | 0.196458 | -35.11353433 | 7.38172582 |
Age | 1.021676993 | 0.367509306 | 2.780003 | 0.007389 | 0.285467386 | 1.7578866 |
Ahe^ = -13.8659 + 1.0217*Age
The estimated intercept β0 is -13.8659
The estimated intercept β1 is 1.0217