In: Economics
In this exercise, you will investigate the relationship between a worker's age and earnings. (Generally, older workers have more job experience, leading to higher productivity and earnings.) The following table contains data for full-time, full-years workers, age 25-34, with a high school diploma or B.A./B.S. as their highest degree. Download the data from the table by clicking the download table icon A detailed description of the variables used in the data set is available here Use a statistical package of your choice to answer the following questions. Suppose you are interested in estimating the following model
Ahe = β0 + β1Age + u
Run a regression of average hourly earnings (AHE) on age (Age).
Run a regression of average hourly earnings (AHE) on age (Age) using the sample for which the indicator variable college = 0.
What is the estimated intercept β0 & β1?
The estimated intercept β0 is ________
The estimated intercept β1 is ________
| College Distance | ||
| Ahe | Age | College |
| 12.6102 | 34 | 1 |
| 17.2572 | 25 | 1 |
| 4.0307 | 32 | 1 |
| 26.146 | 33 | 1 |
| 33.352 | 27 | 1 |
| 8.9155 | 27 | 1 |
| 64.6712 | 26 | 1 |
| 9.3487 | 26 | 1 |
| 44.0298 | 30 | 1 |
| 8.1751 | 31 | 1 |
| 24.4249 | 26 | 1 |
| 16.0365 | 31 | 1 |
| 31.7643 | 26 | 1 |
| 32.8926 | 33 | 1 |
| 25.9257 | 29 | 1 |
| 26.8499 | 30 | 1 |
| 22.6707 | 30 | 1 |
| 14.4586 | 27 | 1 |
| 15.6864 | 27 | 1 |
| 55.2604 | 32 | 1 |
| 27.1889 | 29 | 1 |
| 38.0335 | 31 | 1 |
| 28.1463 | 26 | 1 |
| 14.3612 | 31 | 1 |
| 15.8709 | 30 | 1 |
| 29.2048 | 28 | 1 |
| 45.106 | 34 | 1 |
| 23.4888 | 27 | 1 |
| 18.44 | 33 | 1 |
| 27.2437 | 25 | 1 |
| 39.4441 | 27 | 1 |
| 14.2008 | 30 | 1 |
| 22.896 | 33 | 1 |
| 31.9338 | 27 | 1 |
| 17.7686 | 28 | 1 |
| 25.2584 | 27 | 1 |
| 36.9844 | 33 | 1 |
| 17.4559 | 32 | 1 |
| 24.827 | 31 | 1 |
| 25.9448 | 34 | 1 |
| 9.3946 | 31 | 1 |
| 24.5044 | 34 | 1 |
| 36.0618 | 29 | 0 |
| 13.5713 | 28 | 0 |
| 8.0061 | 26 | 0 |
| 20.0158 | 29 | 0 |
| 45.4987 | 33 | 0 |
| 7.2858 | 27 | 0 |
| 11.9818 | 33 | 0 |
| 18.1214 | 25 | 0 |
| 7.6007 | 32 | 0 |
| 12.5471 | 29 | 0 |
| 16.9855 | 28 | 0 |
| 15.1409 | 29 | 0 |
| 6.7083 | 27 | 0 |
| 22.2952 | 33 | 0 |
| 12.148 | 30 | 0 |
| 8.2473 | 28 | 0 |
| 15.0424 | 27 | 0 |
| 6.7796 | 25 | 0 |
| 16.8188 | 25 | 0 |
| 14.8258 | 30 | 0 |
| 15.7019 | 25 | 0 |
| 2.6229 | 30 | 0 |
| 23.8469 | 31 | 0 |
| 12.2451 | 31 | 0 |
| 21.8335 | 33 | 0 |
| 15.4616 | 26 | 0 |
| 32.2909 | 29 | 0 |
| 10.7363 | 28 | 0 |
| 11.2132 | 34 | 0 |
| 14.9038 | 28 | 0 |
| 24.3312 | 29 | 0 |
| 12.9998 | 30 | 0 |
| 17.0164 | 26 | 0 |
| 9.7228 | 25 | 0 |
| 10.2584 | 28 | 0 |
| 18.4956 | 29 | 0 |
| 11.1666 | 33 | 0 |
| 18.4905 | 29 | 0 |
| 15.8924 | 34 | 0 |
| 17.4147 | 29 | 0 |
| 17.99 | 29 | 0 |
| 12.807 | 25 | 0 |
| 9.8222 | 29 | 0 |
| 4.0649 | 25 | 0 |
| 7.177 | 25 | 0 |
| 9.2321 | 31 | 0 |
| 19.2232 | 30 | 0 |
| 12.0358 | 25 | 0 |
| 22.8428 | 29 | 0 |
| 20.2687 | 26 | 0 |
| 14.0444 | 30 | 0 |
| 8.7165 | 25 | 0 |
| 31.0064 | 33 | 0 |
| 7.6344 | 26 | 0 |
| 16.8722 | 31 | 0 |
| 12.7747 | 28 | 0 |
| 23.2383 | 30 | 0 |
| 16.8357 | 30 | 0 |
Ahe^ = β0 + β1Age
The regression output of average hourly earnings (AHE) on age (Age) is:
| SUMMARY OUTPUT | ||||||||
| Regression Statistics | ||||||||
| Multiple R | 0.185942625 | |||||||
| R Square | 0.03457466 | |||||||
| Adjusted R Square | 0.024723381 | |||||||
| Standard Error | 10.93882456 | |||||||
| Observations | 100 | |||||||
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 1 | 419.9587292 | 419.9587292 | 3.50966204 | 0.063991825 | |||
| Residual | 98 | 11726.47252 | 119.6578828 | |||||
| Total | 99 | 12146.43125 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | -2.278743498 | 11.68247745 | -0.195056529 | 0.845752519 | -25.46223979 | 20.9047528 | -25.46223979 | 20.9047528 |
| Age | 0.748794072 | 0.399695951 | 1.873409203 | 0.063991825 | -0.044389534 | 1.541977678 | -0.044389534 | 1.541977678 |
Ahe^ = -2.2787 + 0.7488*Age
The estimated intercept β0 is -2.2787
The estimated intercept β1 is 0.7488
The regression output of average hourly earnings (AHE) on age (Age) using the sample for which the indicator variable college = 0 is:
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.348240043 | |||||
| R Square | 0.121271127 | |||||
| Adjusted R Square | 0.10557954 | |||||
| Standard Error | 7.342102804 | |||||
| Observations | 58 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 416.6117057 | 416.6117 | 7.728417 | 0.00738867 | |
| Residual | 56 | 3018.762521 | 53.90647 | |||
| Total | 57 | 3435.374227 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | -13.86590425 | 10.60662849 | -1.30729 | 0.196458 | -35.11353433 | 7.38172582 |
| Age | 1.021676993 | 0.367509306 | 2.780003 | 0.007389 | 0.285467386 | 1.7578866 |
Ahe^ = -13.8659 + 1.0217*Age
The estimated intercept β0 is -13.8659
The estimated intercept β1 is 1.0217