Question

In: Statistics and Probability

In a metal fabrication​ process, metal rods are produced to a specified target length of 15...

In a metal fabrication​ process, metal rods are produced to a specified target length of 15 feet​ (ft). Suppose that the lengths are normally distributed. A quality control specialist collects a random sample of 16 rods and finds the sample mean length to be 14.8 feet and a standard deviation of 0.65 feet. The​ 95% confidence interval for the true mean length of rods produced by this process is​ _______.

A.

14.454 to 15.146 ft

B.

14.345 to 15.255 ft

C.

13.912 to 15.688 ft

D.

13.834 to 15.766 ft

E.

14.544 to 15.056 ft

Solutions

Expert Solution

solution

Given that,

= 14.8

s =0.65

n = 16

Degrees of freedom = df = n - 1 = 16- 1 = 15

At 95% confidence level the t is ,

= 1 - 95% = 1 - 0.95 = 0.05

/ 2 = 0.05 / 2 = 0.025

t /2,df = t0.025,15 = 2.131    ( using student t table)

Margin of error = E = t/2,df * (s /n)

=2.131 * (0.65 / 16) = 0.346

The 95% confidence interval estimate of the population mean is,

- E < < + E

14.8- 0.346 < < 14.8 + 0.346

14.454< < 15.146

( 14.454,15.146 )


Related Solutions

In a metal fabrication process, metal rods are produced to a specified target length of 15...
In a metal fabrication process, metal rods are produced to a specified target length of 15 feet. Suppose that the lengths are normally distributed. A quality control specialist collects a random sample of 16 rods and finds the sample mean length to be 14.8 feet and a standard deviation of 0.65 feet. Based on this information answer the following questions to determine if the manufacturer is making rods too short. a. Write the null and alternative hypotheses to test this...
In a metal fabrication process, metal rods are produced to a specified target length of 15...
In a metal fabrication process, metal rods are produced to a specified target length of 15 feet. Suppose that the lengths are normally distributed. A quality control specialist collects a random sample of 16 rods and finds the sample mean length to be 14.8 feet and a standard deviation of 0.65 feet. Based on this information answer the following questions to determine if the manufacturer is making rods too short.In a metal fabrication process, metal rods are produced to a...
Question 1 The lengths of metal rods produced by an industrial process are normally distributed with...
Question 1 The lengths of metal rods produced by an industrial process are normally distributed with a standard deviation of 1.8 millimeters. Based on a random sample of nine observations from this population, the 99% confidence interval was found for the population mean length to extend from 194.65 to 197.75. Suppose that a production manager believes that the interval is too wide for practical use and, instead, requires a 99% confidence interval extending no further than 0.50 mm on each...
Length of metal strips produced by a machine process are normally distributed with a mean length...
Length of metal strips produced by a machine process are normally distributed with a mean length of 50mm and a standard deviation of 5mm. Giving your answer as a decimal to 4 decimal places, find the probability that the length of a randomly selected strip is a) Shorter than 47mm b) Longer than 58mm c) Between 48mm48mm and 56mm
Suppose a batch of steel rods produced at a steel plant have a mean length of...
Suppose a batch of steel rods produced at a steel plant have a mean length of 151 millimeters, and a variance of 64. If 116 rods are sampled at random from the batch, what is the probability that the length of the sample rods would differ from the population mean by more than 0.81 millimeters? Round your answer to four decimal places.
Suppose a batch of steel rods produced at a steel plant have a mean length of...
Suppose a batch of steel rods produced at a steel plant have a mean length of 151 millimeters, and a variance of 64. If 116 rods are sampled at random from the batch, what is the probability that the length of the sample rods would differ from the population mean by more than 0.81 millimeters? Round your answer to four decimal places.
Suppose a batch of steel rods produced at a steel plant have a mean length of...
Suppose a batch of steel rods produced at a steel plant have a mean length of 194 millimeters, and a variance of 121. If 339 rods are sampled at random from the batch, what is the probability that the mean length of the sample rods would be greater than 194.95 millimeters? Round your answer to four decimal places.
Suppose a batch of steel rods produced at a steel plant have a mean length of...
Suppose a batch of steel rods produced at a steel plant have a mean length of 194 millimeters, and a variance of 121 . If 339 rods are sampled at random from the batch, what is the probability that the mean length of the sample rods would differ from the population mean by less than 0.95 millimeters? Round your answer to four decimal places.
Suppose a batch of steel rods produced at a steel plant have a mean length of...
Suppose a batch of steel rods produced at a steel plant have a mean length of 198198 millimeters, and a variance of 100100. If 228228 rods are sampled at random from the batch, what is the probability that the mean length of the sample rods would be greater than 197.12197.12 millimeters? Round your answer to four decimal places.
Suppose a batch of steel rods produced at a steel plant have a mean length of...
Suppose a batch of steel rods produced at a steel plant have a mean length of 178 millimeters, and a standard deviation of 12 millimeters. If 76 rods are sampled at random from the batch, what is the probability that the mean length of the sample rods would be less than 177.44 millimeters? Round your answer to four decimal places.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT