Question

In: Statistics and Probability

Suppose that the probability that a passenger will miss a flight is 0.0925. Airlines do not...

Suppose that the probability that a passenger will miss a flight is 0.0925. Airlines do not like flights with empty​ seats, but it is also not desirable to have overbooked flights because passengers must be​ "bumped" from the flight. Suppose that an airplane has a seating capacity of 53 passengers. Suppose that 57 tickets are sold. What is the probability that a passenger will have to be​ "bumped"?

​(a) Suppose that 57 tickets are sold. What is the probability that a passenger will have to be​ "bumped"? ​

(b). For a plane with seating capacity of 51 ​passengers, how many tickets may be sold to keep the probability of a passenger being​ "bumped" below 55%?

For part a using binomcdf (59,0.9075,53)= .4676 1-.4676=0.5324. However when doing it by hand 59nCr53(0.9075)53 (1-0.9075)6 =.1646 . Can someone tell me what I am doing wrong when using the formula to solve the question? Thank you  

For part b not sure how to do it

Solutions

Expert Solution


Related Solutions

Suppose that the probability that a passenger will miss a flight is 0.0925 Airlines do not...
Suppose that the probability that a passenger will miss a flight is 0.0925 Airlines do not like flights with empty​ seats, but it is also not desirable to have overbooked flights because passengers must be​ "bumped" from the flight. Suppose that an airplane has a seating capacity of 59 passengers. ​(a) If 61 tickets are​ sold, what is the probability that 60 or 61 passengers show up for the flight resulting in an overbooked​ flight? ​(b) Suppose that 65 tickets...
Suppose that the probability that a passenger will miss a flight is 0.0928. Airlines do not...
Suppose that the probability that a passenger will miss a flight is 0.0928. Airlines do not like flights with empty​ seats, but it is also not desirable to have overbooked flights because passengers must be​ "bumped" from the flight. Suppose that an airplane has a seating capacity of 54 passengers. ​(a) If 56 tickets are​ sold, what is the probability that 55 or 56 passengers show up for the flight resulting in an overbooked​ flight? ​(b) Suppose that 60 tickets...
Suppose that the probability that a passenger will miss a flight is 0.0978. Airlines do not...
Suppose that the probability that a passenger will miss a flight is 0.0978. Airlines do not like flights with empty​ seats, but it is also not desirable to have overbooked flights because passengers must be​ "bumped" from the flight. Suppose that an airplane has a seating capacity of 51 passengers. ​(a) If 53 tickets are​ sold, what is the probability that 52 or 53 passengers show up for the flight resulting in an overbooked​ flight? ​(b) Suppose that 57 tickets...
Suppose that the probability that a passenger will miss a flight is 0.0965. Airlines do not...
Suppose that the probability that a passenger will miss a flight is 0.0965. Airlines do not like flights with empty​ seats, but it is also not desirable to have overbooked flights because passengers must be​ "bumped" from the flight. Suppose that an airplane has a seating capacity of 54 passengers. ​(a) If 56 tickets are​ sold, what is the probability that 55 or 56 passengers show up for the flight resulting in an overbooked​ flight? ​(b) Suppose that 60 tickets...
Suppose that the probability that a passenger will miss a flight is 0.0976. Airlines do not...
Suppose that the probability that a passenger will miss a flight is 0.0976. Airlines do not like flights with empty​ seats, but it is also not desirable to have overbooked flights because passengers must be​ "bumped" from the flight. Suppose that an airplane has a seating capacity of 59 passengers. ​(a) If 61 tickets are​ sold, what is the probability that 60 or 61 passengers show up for the flight resulting in an overbooked​ flight? ​(b) Suppose that 65 tickets...
Suppose that the probability that a passenger will miss a flight is .0946. Airlines do not...
Suppose that the probability that a passenger will miss a flight is .0946. Airlines do not like flights with empty​ seats, but it is also not desirable to have overbooked flights because passengers must be​ "bumped" from the flight. Suppose that an airplane has a seating capacity of 56 passengers. ​(a) If 58 tickets are​ sold, what is the probability that 57 or 58 passengers show up for the flight resulting in an overbooked​ flight? ​(b) Suppose that 62 tickets...
Suppose that the probability that a passenger will miss a flight is 0.0917. Airlines do not...
Suppose that the probability that a passenger will miss a flight is 0.0917. Airlines do not like flights with empty​ seats, but it is also not desirable to have overbooked flights because passengers must be "bumped" from the flight. Suppose that an airplane has a seating capacity of 51 passengers. ​(a) If 53 tickets are​ sold, what is the probability that 52 or 53 passengers show up for the flight resulting in an overbooked​ flight? ​(b) Suppose that 57 tickets...
Suppose that the probability that a passenger will miss a flight is 0.0929. Airlines do not...
Suppose that the probability that a passenger will miss a flight is 0.0929. Airlines do not like flights with empty​ seats, but it is also not desirable to have overbooked flights because passengers must be​ "bumped" from the flight. Suppose that an airplane has a seating capacity of 52 passengers. ​(a) If 54 tickets are​ sold, what is the probability that 53 or 54 passengers show up for the flight resulting in an overbooked​ flight? ​(b) Suppose that 58 tickets...
Suppose that the probability that a passenger will miss a flight is 0.0912 Airlines do not...
Suppose that the probability that a passenger will miss a flight is 0.0912 Airlines do not like flights with empty​seats, but it is also not desirable to have overbooked flights because passengers must be​ "bumped" from the flight. Suppose that an airplane has a seating capacity of 53 passengers.​(a) If 55 tickets are​ sold, what is the probability that 54 or 55 passengers show up for the flight resulting in an overbooked​ flight?​(b) Suppose that 59 tickets are sold. What...
Suppose that the probability that a passenger will miss a flight is 0.0943. Airlines do not...
Suppose that the probability that a passenger will miss a flight is 0.0943. Airlines do not like flights with empty​ seats, but it is also not desirable to have overbooked flights because passengers must be​ "bumped" from the flight. Suppose that an airplane has a seating capacity of 58 passengers. ​(a) If 60 tickets are​ sold, what is the probability that 59 or 60 passengers show up for the flight resulting in an overbooked​ flight? ​(b) Suppose that 64 tickets...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT