Question

In: Physics

A 4.20 kg steel ball strikes a wall with a speed of 12.0 m/s at an...

A 4.20 kg steel ball strikes a wall with a speed of 12.0 m/s at an angle of 60.0° with the surface. It bounces off with the same speed and angle. If the ball is in contact with the wall for 0.200 s, what is the average force exerted by the wall on the ball? (Assume right is the positive direction.)

Solutions

Expert Solution

The figure shows a steel ball coming and striking the surface, making an angle 60o with the surface. px and py shows the initial momentum along X and Y direction whereas px' and py' shows the final momentum along X and Y direction of the steel ball.

It is clear from the figure that there no change in momentum along the Y axis before and after collision. However, along the X axis momentum direction changes but its magnitude is the same according to question. Therefore, Force (F) acts along X axis only given by:

Here, m is the mass of the steel ball

v is velocity of ball whose magnitude is same before and after collision as given in the question "bounces off with the same speed and angle".

We have considered the right side as positive as stated in the question.

The negative sign in the question signifies that the force acts along the negative X axis on the ball.


Related Solutions

A ball of mass 8.1 g with a speed of 22.6 m/s strikes a wall at...
A ball of mass 8.1 g with a speed of 22.6 m/s strikes a wall at an angle 11.0o and then rebounds with the same speed and angle. It is in contact with the wall for 44.0 ms. What is the magnitude of the impulse associated with the collision force?
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s...
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s rear-ends a 821-kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision. vcar = ___________________ m/s vtruck = ____________________ m/s
You throw a ball towards a wall at a speed of 20 m/s and at an...
You throw a ball towards a wall at a speed of 20 m/s and at an angle of 50 degrees. The wall is 22 m away from you. (a) How far above the release point does the ball hit the wall? (b) What is the vertical component of the balls velocity when it hits the wall? (c) What is the horizontal component of the balls velocity when it hits the wall?
You throw a ball toward a wall with a speed of 25.0 m/s and a launch...
You throw a ball toward a wall with a speed of 25.0 m/s and a launch angle of 40° relative to the ground. The wall is 22.0 m from the point where you are standing. 1. How far above the release point does the ball hit the wall? 2. What is the velocity as the ball hits the wall? 3. When it hits, has it passed the highest point of its trajectory? 4. At the point where the ball hits...
1) A ball 1 with a mass of 2.0 kg and moving at 2.0 m/s strikes...
1) A ball 1 with a mass of 2.0 kg and moving at 2.0 m/s strikes a glancing blow on a second ball 2 which is initially at rest. Assume no external forces act. After the collision, ball 1 is moving at right angles to its original direction at a speed of 3.0 m/s. (a) Calculate the initial momentum of the system. (b) Determine the magnitude of the momentum of Ball 2 after the collision? (c) In what direction is...
A cue ball (0.17 kg) is moving at a velocity of 11.3 m/s when it strikes...
A cue ball (0.17 kg) is moving at a velocity of 11.3 m/s when it strikes two billiard balls (0.16kg), at rest, "dead center" and comes to rest. If one billiard ball moves at a velocity of 4.1 m/s at an angle of 39 radians measured clockwise relative to the incoming direction of the cue ball, and another ball moves at an angle measured counter-clockwise relative to the incoming direction of the cue ball, how fast is the second ball...
Ball A of mass 0.55 kg has a velocity of 0.65 m/s east. It strikes a...
Ball A of mass 0.55 kg has a velocity of 0.65 m/s east. It strikes a stationary ball, also of mass 0.55 kg. Ball A deflects off ball B at an angle of 37° north of A's original path. Ball B moves in a line 90° right of the final path of A. Find the momentum (in kg m/s) of Ball A after the collision.
A 5 kg ball is traveling to the right at a speed of 12 m/s.  A 2...
A 5 kg ball is traveling to the right at a speed of 12 m/s.  A 2 kg ball is traveling to the left at 30 m/s.  They collide in an inelastic collision.   What is their final speed? 0 m/s 12 m/s 17 m/s 30 m/s 42 m/s A 2000 kg truck drives the right at a speed of 40 m/s. How many 0.25 kg bullets fired at 350 m/s need to be fired at the front of the truck to stop...
A sticky ball of mass 0.0450 kg, traveling with a speed of 22.0 m/s in a...
A sticky ball of mass 0.0450 kg, traveling with a speed of 22.0 m/s in a direction 30.00 below the +x axis collides with another moving ball, of mass 0.0119 kg, traveling in a direction 44.70 above the +x axis. The two balls stick together and keep moving horizontally. The initial speed of the second ball is: a) 59.1 m/s b) 18.9 m/s c) 75.7 m/s d) 30.2 m/s e) 42.6 m/s
A 8-g bullet moving horizontally with speed of 250 m/s strikes and remains in a 4.0-kg...
A 8-g bullet moving horizontally with speed of 250 m/s strikes and remains in a 4.0-kg block initially at rest on the edge of a table. The block, which is initially 80 cm above the floor, strikes the floor a horizontal distance from the base of table. What is the horizontal distance on the floor?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT