In: Finance
Suppose that the entire security market is made of only three types of assets: a risk-free asset, with a return of 3%, and two risky stocks A and B. There are 500 A stocks trading in the market, at a price of $10 per stock. Stock A has an expected return of 8% and a volatility of 10%. There are 375 B stocks trading in the market at a price of $8 per stock. Stock B has a volatility of 16%. The correlation between the returns of stock A and stock B is 0.15. 1. Compute the volatility of the market portfolio. (8 points) 2. Compute the β of stock B. (8 points) 3. Compute the expected return of stock B. (8 points)
Portfolio Variance=(w1^2)*(S1^2)+(w2^2)(S2^2)+2w1w2*Cov(1,2) | |||||||||
w1=Weight of Stock1 | |||||||||
S1=Standard Deviation of Stock1 | |||||||||
w2=Weight of stock 2 | |||||||||
S2=Standard Deviation of stock2 | |||||||||
Cov(1,2)=Covariance of Stock 1 and Stock2 | |||||||||
Cov(1,2)=Corrl(1,2)*S1*S2 | |||||||||
Corrl(1,2)=Correlation of Stock1 and 2 | |||||||||
A | Market value of Stock A | $5,000 | (500*10) | ||||||
B | Market value of Stock B | $3,000 | (375*8) | ||||||
C=A+B | Total Market Value | $8,000 | |||||||
w1=A/C | Weight of Stock A | 0.625 | |||||||
w2=B/C | Weight of Stock B | 0.375 | |||||||
S1 | Standard Deviation of stock A | 10% | |||||||
S2 | Standard Deviation of stock B | 16% | |||||||
Corrl(1,2) | Correlation of return of A&B | 0.15 | |||||||
Cov(1,2) | Covariance of Stock A & stock B | 24 | (0.15*10*16) | ||||||
Vp | Market Portfolio Variance= | (w1^2)*(S1^2)+(w2^2)(S2^2)+2w1w2*Cov(1,2) | |||||||
Vp | Market Portfolio Variance= | 86.3125 | (0.625^2)*(10^2)+(0.375^2)*(16^2)+2*0.625*0.375*24 | ||||||
Sp | Market Portfolio Standard Deviation= Square Root of Vp | ||||||||
Vp | Standard Deviation of market Portfolio | 9.290452 | (86.3125^2) | ||||||
Volatility of market portfolio | 9.3% | ||||||||
Beta of Stock B=Beta2=Correlation (1,2)*(S2/S1) | |||||||||
Beta of Stock B=Beta2=Correlation (1,2)*(S2/S1) | |||||||||
Beta of Stock B= | 0.24 | 0.15*(16/10) | |||||||
Expected Return of Stock B=Rf +Beta*(Rm-Rf) | |||||||||
Rm | Market Return =0.625*R1+0.375*R2 | ||||||||
R1=Return of stock A= | 8% | ||||||||
R2=return of Stock B | |||||||||
Rf=Risk free Rate=3% | |||||||||
Rm=0.625*8+0.375R2….Eqn(1) | |||||||||
R2=3+0.24*(Rm-3) | |||||||||
0.24 Rm=R2-3+(0.24*3) | |||||||||
0.24Rm=R2-2.28 | |||||||||
Rm=(R2/0.24)-(2.28/0.24) | |||||||||
Rm=(R2/0.24)-9.5…Eq(2) | |||||||||
Subtracting Equan(1) from Eqn(2) | |||||||||
(R2/0.24)-9.5-0.375R2-(8*0.625)=0 | |||||||||
4.1667R2-9.5-0.375R2-5=0 | |||||||||
3.79R2=14.5 | |||||||||
R2=14.5/3.79= | 3.825858 | ||||||||
Return of StockB | 3.80% | ||||||||