Question

In: Statistics and Probability

Suppose the number of customers arriving at a store obeys a Poisson distribution with an average...

Suppose the number of customers arriving at a store obeys a Poisson distribution with an average of λ customers per unit time. That is, if Y is the number of customers arriving in an interval of length t, then Y∼Poisson(λt). Suppose that the store opens at time t=0. Let X be the arrival time of the first customer. Show that X∼Exponential(λ).

Solutions

Expert Solution

This is a simple problem related to having an understanding of poisson's distirbution and exponential distribution.

We actually need to first of all understand the significiance and relationship between the two.

The Poisson distribution models the number of arrivals in a certain fixed time. It is a discrete distribution, taking on values 0,1,2,…0,1,2,….

Whereas,

The exponential distribution models the waiting time between consecutive arrivals. It is a continuous distribution.

Now Think !

Is there any connection between the two ??

There is a connection, since they are used in modelling two different features of the same phenomenon.

But they are defined over two different aspects of the same process and are hence quite different distributions.

Another way to understand hte connection between the two is that if the waiting times between any two consecutive arrivals are independent exponentially distributed with parameter λ, then the number of events in unit time has Poisson distribution with parameter λ.

This explains our inference that if

Y is the number of customers arriving in an interval of length t, then Y∼Poisson(λt). (general poisson distirbution dipiction)

For the same distirbution if we consider time as the parameter of reference then then the arrival time of the first customer. will be shown by an exponential distirbution

X∼Exponential(λ).


Related Solutions

The number of arriving customers to a big supermarket is following a Poisson distribution with a...
The number of arriving customers to a big supermarket is following a Poisson distribution with a rate of 4 customers per a minute. What is the probability that no customer will arrive in a given minute? What is the probability that exactly 3 customers will arrive in a given minute? What is the probability that at least seven customer will arrive in a given minute? What is the probability that at most one customer will arrive in 40 seconds? What...
Suppose the number of customers arriving in a bookstore is Poisson distributed with a mean of...
Suppose the number of customers arriving in a bookstore is Poisson distributed with a mean of 2.3 per 12 minutes. The manager uses a robot to observe the customers coming to the bookstore. a)What is the mean and variance of the number of customers coming into the bookstore in 12 minutes? b)What is the probability that the robot observes 10 customers come into the bookstore in one hour? c)What is the probability that the robot observes at least one customer...
The number of female customers arriving to a coffee shop follow a Poisson process with a...
The number of female customers arriving to a coffee shop follow a Poisson process with a mean rate of 3 per hour. The number of male customers arriving to the same coffee shop also follow a Poisson process with a mean rate of 6 per hour and their arrival is independent of the arrivals of female customers. a) What is the probability that the next customer will arrive within 5 minutes? b) What is the probability that exactly thee customers...
The number of people arriving at an emergency room follows a Poisson distribution with a rate...
The number of people arriving at an emergency room follows a Poisson distribution with a rate of 9 people per hour. a) What is the probability that exactly 7 patients will arrive during the next hour? b. What is the probability that at least 7 patients will arrive during the next hour? c. How many people do you expect to arrive in the next two hours? d. One in four patients who come to the emergency room in hospital. Calculate...
The number of people arriving at an emergency room follows a Poisson distribution with a rate...
The number of people arriving at an emergency room follows a Poisson distribution with a rate of 7 people per hour. a. What is the probability that exactly 5 patients will arrive during the next hour? (3pts) b. What is the probability that at least 5 patients will arrive during the next hour? (5pts) c. How many people do you expect to arrive in the next two hours? (4pts) d. One in four patients who come to the emergency room...
The number of emails arriving at a server per minute is claimed to follow a Poisson distribution.
  The number of emails arriving at a server per minute is claimed to follow a Poisson distribution. To test this claim, the number of emails arriving in 70 randomly chosen 1-minute intervals is recorded. The table below summarizes the result.           Number of emails 0 1 2 ≥ 3 Observed Frequency 13 22 23 12 Test the hypothesis that the number of emails per minute follows a Poisson distribution? Use a significance level of α...
Service calls arriving at an electric company follow a Poisson distribution with an average arrival rate...
Service calls arriving at an electric company follow a Poisson distribution with an average arrival rate of 70 per hour. Using the normal approximation to the Poisson, find the probability that the electric company receives at most 58 service calls per hour. Round your answer to four decimal places, if necessary.
Suppose that telephone calls arriving at a particular switchboard follow a Poisson process with an average...
Suppose that telephone calls arriving at a particular switchboard follow a Poisson process with an average of 6 calls coming per minute. What is the probability that up to 2 minutes will elapse by the time 2 calls have come into the switchboard?
Customers arrive at a department store according to a Poisson process with an average of 12...
Customers arrive at a department store according to a Poisson process with an average of 12 per hour. a. What is the probability that 3 customers arrive between 12:00pm and 12:15pm? b. What is the probability that 3 customers arrive between 12:00pm and 12:15pm and 6 customers arrive between 12:30pm and 1:00pm? c. What is the probability that 3 customers arrive between 12:00pm and 12:15pm or 6 customers arrive between 12:30pm and 1:00pm? d. What is the probability that a...
Customers are arriving to a shop according to Poisson process with mean 3.2 customers/hour. What is...
Customers are arriving to a shop according to Poisson process with mean 3.2 customers/hour. What is the probability that the next customer will arrive after 10 minutes but before 33 minutes?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT