In: Economics
Company expects revenue of $1 million in year 1, $1.2 million in year 2, and amounts increasing by $200,000 per year thereafter. If the company’s MARR is 5% per year, what is the future worth of the revenue through the end of year 10?
We can calculate the FV of the stream as follows:
Year | CF | Compounding Factor | Compounded CF | ||
1 | $ 1.00 | (1+0.05)^(10-1)= | 1.551328216 | 1.55132821597852*1= | $ 1.55 |
2 | $ 1.20 | (1+0.05)^(10-2)= | 1.477455444 | 1.47745544378906*1.2= | $ 1.77 |
3 | $ 1.40 | (1+0.05)^(10-3)= | 1.407100423 | 1.40710042265625*1.4= | $ 1.97 |
4 | $ 1.60 | (1+0.05)^(10-4)= | 1.340095641 | 1.340095640625*1.6= | $ 2.14 |
5 | $ 1.80 | (1+0.05)^(10-5)= | 1.276281563 | 1.2762815625*1.8= | $ 2.30 |
6 | $ 2.00 | (1+0.05)^(10-6)= | 1.21550625 | 1.21550625*2= | $ 2.43 |
7 | $ 2.20 | (1+0.05)^(10-7)= | 1.157625 | 1.157625*2.2= | $ 2.55 |
8 | $ 2.40 | (1+0.05)^(10-8)= | 1.1025 | 1.1025*2.4= | $ 2.65 |
9 | $ 2.60 | (1+0.05)^(10-9)= | 1.05 | 1.05*2.6= | $ 2.73 |
10 | $ 2.80 | (1+0.05)^(10-10)= | 1 | 1*2.8= | $ 2.80 |
Future worth = Sum of all compounded CF | $ 22.89 |
So FV is 22.89