In: Statistics and Probability
I ett laboratorium vet man av erfarenhet att ett experiment lyckas i 8 falla av 10, och att experiment lyckas oberoende av varandra.
a) Under en vecka genomfördes 25 experiment. Vad är sannolikheten att högst 2 experiment misslyckades?
b) Under ett år genomfördes 1100 experiment. Uppskatta sannolikheten att 900 eller fler experiment lyckades
We have
Probability of success = 8/10 = 0.80
a)
Here, we use Binomial distribution as :
n = Number of trials
p = probability of success
x = Number of sucess
In our case, X is number of times an experiment failed
So,
n = 25
p = probability of failure = 1 - probability of success = 1 - 0.80 = 0.20
Required probability = P(X 2) = P(X=0) + P(X=1) + P(X=2)
Note :
n! = n*(n-1)*(n-2)*.......................*1
0! = 1
So, solving above we get :
Similarly,
So,
Probability that at most 2 experiments failed = 0.0038 + 0.0236 + 0.0708 = 0.0982
b)
Here, since the sample size is large , we can use Binomial approximation to normal distribution
Number of successes will follow Normal distribution with parameters as :
Required probability = Probability that 900 or more experiments were successful = P(X>900)
We use Excel function "NORMSDIST()" as :
Hence,
Probability that 900 or more experiments were successful = P(X>900) = 0.066