Question

In: Statistics and Probability

In an examination the probability distribution of scores (X) can be approximated by normal distribution with...

In an examination the probability distribution of scores (X) can be approximated by normal distribution with mean 64.9 and standard deviation 9.4.

Suppose one has to obtain at least 55 to pass the exam. What is the probability that a randomly selected student passed the exam? [Answer to 3 decimal places]

Tries 0/5

If two students are selected randomly what is the chance that both the students failed? [Answer to 3 decimal places]

Tries 0/5

If only top 4% students are given an award, then what was the minimum marks required to get the award? [Answer to 1 decimal place]

Tries 0/5

Solutions

Expert Solution


Related Solutions

College entrance examination scores (X) have an approximately normal distribution with mean 500 and standard deviation...
College entrance examination scores (X) have an approximately normal distribution with mean 500 and standard deviation 100. (b) If 4 scores are selected at random, what is the distribution of their average? Include the name of the distribution and the values of any parameters. Show work if possible. (c) If 4 scores are selected at random, what is the probability that their average is 510 or greater? (d) If 25 scores are selected at random, what is the probability that...
21- Scores on an examination are assumed to have a normal distribution with mean 78 and...
21- Scores on an examination are assumed to have a normal distribution with mean 78 and standard deviation 6. a) What is the proportion of scores that are higher than 75? b) What is the proportion of scores that fall between 75 and 87? c) Suppose that students scoring in the top 10% of this distribution are to receive an A grade. What is the minimum score a student must achieve to earn an A grade? PLEASE EXPLAIN YOUR ANSWER
Scores on a certain nationwide college entrance examination follow a normal distribution with a mean of...
Scores on a certain nationwide college entrance examination follow a normal distribution with a mean of 500 and a standard deviation of 100. Find the probability that a student will score... a) over 650 b) less than 459 c) between 325 and 675 d) If a school only admits students who score over 680, what proportion of the student's pool would be eligible for admission? e) what limit (score) would you set that makes the top 20% of the students...
Scores on a certain nationwide college entrance examination follow a normal distribution with a mean of...
Scores on a certain nationwide college entrance examination follow a normal distribution with a mean of 500 and a standard deviation of 100. Find the probability that a student will score... a) over 650 b) less than 459 c) between 325 and 675 d) If a school only admits students who score over 680, what proportion of the student's pool would be eligible for admission? e) what limit (score) would you set that makes the top 20% of the students...
Proportion data follow the binomial distribution, which can be approximated by the normal distribution if np>=5...
Proportion data follow the binomial distribution, which can be approximated by the normal distribution if np>=5 and nq>=5 True or False? The sample Proportion p̄=x/n where x is the number of successes and n is the sample size True or false? The Type-II error β is the probability of failing to reject a true null Hypothesis Ho. True or false? The only way to lower the probability of both errors α and β at the same time, is to decrease...
3. (a) Scores on a statistics evaluation follow a normal distribution What is the probability, rounded...
3. (a) Scores on a statistics evaluation follow a normal distribution What is the probability, rounded to four digits, that a randomly selected student will achieve a score that exceeds the mean score by more than 1.5 standard deviations? (Remember that 1.5 standard deviations means a z-score of 1.5.) (b) A statistics instructor gives an evaluation to a large group of students. The scores are normally distributed with μ = 70 and σ = 10. (i) Compute the probability that...
11. In SPC, the distribution of “sample means” 1) Cannot be approximated by normal distribution. 2)...
11. In SPC, the distribution of “sample means” 1) Cannot be approximated by normal distribution. 2) Will have greater variability than the process distribution. 3) Will have a mean greater than the process distribution as a function of the sample size. 4) Is exactly like the original distribution under all circumstances. 5) None of the above is true. 15. Which of the following statements is true? Training of Service Personnel is a criterion for evaluating the explicit servicesfeature of the...
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used...
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(X) using the normal distribution and compare the result with the exact probability. nequals62​, pequals0.3​, and Xequals8
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used...
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(X) using the normal distribution and compare the result with the exact probability. n=40, p=0.35​, X=20 P (X) = Can the normal distribution be used to approximate this​probability? Approximate​ P(X) using the normal distribution. Use a standard normal distribution table. Select the correct choice below and fill in any answer boxes in your choice. By how much...
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used...
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(X) using the normal distribution and compare the result with the exact probability. n=40, p=0.35​, X=20 P (X) = Can the normal distribution be used to approximate this​ probability? Approximate​ P(X) using the normal distribution. Use a standard normal distribution table. Select the correct choice below and fill in any answer boxes in your choice. By how...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT