In: Economics
Refer to the information in the table that follows to answer the question that follows: (Difficult Question)
Output (Income) Y |
Net Taxes T |
Consumption Spending (C = 100 + 0.9Yd) |
Savings S |
Planned Investment I |
Government Spending G |
---|---|---|---|---|---|
2400 | 100 | 2170 | 130 | 130 | 200 |
2800 | 100 | 2530 | 170 | 130 | 200 |
3000 | 100 | 2710 | 190 | 130 | 200 |
3200 | 100 | 2890 | 210 | 130 | 200 |
3400 | 100 | 3070 | 230 | 130 | 200 |
3600 | 100 | 3250 | 250 | 130 | 200 |
3800 | 100 | 3430 | 270 | 130 | 200 |
If taxes are reduced from 100 to 25, then calculate the CHANGE in the equilibrium level of income?
Select one:
a. -1800
b. 75
c. 450
d. 675
Output | Net Tax | Consumption © | Savings | I | G | Y = C + I + G |
2,400 | 100 | 2170 | 130 | 130 | 200 | 2500 |
2,800 | 100 | 2530 | 170 | 130 | 200 | 2860 |
3,000 | 100 | 2710 | 190 | 130 | 200 | 3040 |
3,200 | 100 | 2890 | 210 | 130 | 200 | 3220 |
3,400 | 100 | 3070 | 230 | 130 | 200 | 3400 |
3,600 | 100 | 3250 | 250 | 130 | 200 | 3580 |
3,800 | 100 | 3430 | 270 | 130 | 200 | 3760 |
Equilibrium in the above case at output level of 3,400
If tax change to 25,
Output | Net Tax | Consumption © | Savings | I | G | Y = C + I + G |
2,400 | 25 | 2237.5 | 130 | 130 | 200 | 2567.5 |
2,800 | 25 | 2597.5 | 170 | 130 | 200 | 2927.5 |
3,000 | 25 | 2777.5 | 190 | 130 | 200 | 3107.5 |
3,200 | 25 | 2957.5 | 210 | 130 | 200 | 3287.5 |
3,400 | 25 | 3137.5 | 230 | 130 | 200 | 3467.5 |
3,600 | 25 | 3317.5 | 250 | 130 | 200 | 3647.5 |
3,800 | 25 | 3497.5 | 270 | 130 | 200 | 3827.5 |
We are not sure aboyt the change in output due to tax. Let us calculate it from equation:
C = 100 + 0.9 * (Y - T)
I = 130
G = 200
Y = 100 + 0.9 * (Y - 25) + 130 + 200
Y = 100 + 0.9Y - 22.5 + 130 + 200
0.1Y = 407.5
Y = 4,075
Thus, equilibrium rise by 675 from 3,400 to 4,075.
Option D is correct.