In: Statistics and Probability
Data on 72 randomly selected flights departing from the three major NYC airports in 2013.
Departure delays in minutes. Negative times represent early departures.
| dep_delay | 
| -4 | 
| -3 | 
| 58 | 
| -5 | 
| -5 | 
| -4 | 
| -1 | 
| -1 | 
| -1 | 
| -3 | 
| -5 | 
| -7 | 
| -5 | 
| -4 | 
| -5 | 
| -8 | 
| -2 | 
| 4 | 
| -1 | 
| 0 | 
| 11 | 
| -5 | 
| 37 | 
| 22 | 
| 65 | 
| 6 | 
| -1 | 
| 19 | 
| 16 | 
| -5 | 
| 178 | 
| -3 | 
| -5 | 
| 4 | 
| -1 | 
| 4 | 
| 15 | 
| -3 | 
| -7 | 
| -6 | 
| -7 | 
| -3 | 
| -5 | 
| 51 | 
| -4 | 
| -6 | 
| -1 | 
| -7 | 
| -11 | 
| 2 | 
| 1 | 
| 102 | 
| -7 | 
| 36 | 
| 11 | 
| 1 | 
| -6 | 
| -7 | 
| -5 | 
| -3 | 
| 9 | 
| 115 | 
| 58 | 
| -2 | 
| -6 | 
| 8 | 
| -4 | 
| -7 | 
| 2 | 
| -5 | 
| 303 | 
| 18 | 
Q1. We want to estimate the proportion of flights that departed from the NYC airports in 2013 which are delayed. There are two ways we can do this. We can either obtain a point estimate or calculate an interval estimate. Provide estimates using both methods. Use a 99% confidence level. Show all working, define variables and state the distribution as needed.
point estimate= x̅ = ΣX/n = 13.5775
----------------
Level of Significance ,    α =   
0.01          
degree of freedom=   DF=n-1=   70  
       
't value='   tα/2=   2.648   [Excel
formula =t.inv(α/2,df) ]      
          
       
Standard Error , SE = s/√n =   46.8224/√71=  
5.5568          
margin of error , E=t*SE =   2.6479  
*   5.5568   =   14.7139
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    13.58  
-   14.7139   =   -1.1364
Interval Upper Limit = x̅ + E =    13.58  
-   14.7139   =   28.2913
99%   confidence interval is (  
-1.14   < µ <   28.29  
)