In: Economics
Find the equilibrium price and quantity for the following related market for two goods.
(a)Qd1=840−5P1−2P2
Qs1=−60+3P1.
and
Qd2=300−P1
−3P2Qs2=−100+3P2.
(b)Qd1=2−3P1+P2
Qs1=−50+15P1.
and
Qd2=220+5P1−4P2
Qs2=−120+32P2.
In general market equilbrium, Quantity demanded equals quantity supplied in each market, and prices equalize in overall (aggregate) economy.
(a)
In market 1, Qd1 = Qs1.
840 - 5P1 - 2P2 = - 60 + 3P1
8P1 + 2P2 = 900
4P1 + P2 = 450 [Dividing both sides by 2]...........(1)
In market 2, Qd2 = Qs.
300 - P1 - 3P2 = - 100 + 3P2
P1 + 6P2 = 400..................................(2)
Multiplying equation (2) by 4,
4P1 + 24P2 = 1600............................(3)
(3) - (1) gives us:
23P2 = 1150
P2 = 50
P1 = 400 - 6P2 [From equation (2)] = 400 - (6 x 50) = 400 - 300 = 100
Q1 = - 60 + (3 x 100) = - 60 + 300 = 240
Q2 = - 100 + (3 x 50) = - 100 + 150 = 50
(b)
In market 1, Qd1 = Qs1.
2 - 3P1 + P2 = - 50 + 15P1
18P1 - P2 = 52.................(1)
In market 2, Qd2 = Qs2.
220 + 5P1 - 4P2 = - 120 + 32P2
- 5P1 + 36P2 = 340..........(2)
Multiplying equation (1) by 36,
648P1 - 36P2 = 1872.......(3)
- 5P1 + 36P2 = 340..........(2)
(2) + (3) gives us: 643P1 = 2212
P1 = 3.44
P2 = 18P1 - 52 [From (1)] = (18 x 3.44) - 52 = 61.92 - 52 = 9.92
Q1 = - 50 + (15 x 3.44) = - 50 + 51.6 = 1.6
Q2 = - 120 + (32 x 9.92) = - 120 + 317.44 = 197.44