Question

In: Statistics and Probability

Month Revenue ($000) 1 700 2 740 3 710 4 695 5 760 6 810 7...

Month Revenue ($000)
1 700
2 740
3 710
4 695
5 760
6 810
7 750
8 820
9 730
10 710
11 720
12 760
13 800
14 820
15 770
16 740
17 690
18 680
19 710
20 740

Monthly revenue for the past 20 months of all the products sold in the Health and Beauty Department of Green Corporation is contained in the Excel data file. Use that data to answer the following.

  1. Obtain a Moving Average forecast of the data using 3 periods to get the moving average – i.e., MA3 forecast. Plot the results on one chart with the plots showing both the actual line and the MA3 line. Show the screenshot of the plot (copy as picture and paste) below. What is the MAD of this forecast? What is the MAPE?

  1. Obtain the Exponential Smoothing (ES) Forecast using a = 0.25. Plot the results on one chart with the plots showing both the actual line and the ES forecast line. Show the screenshot of the plot (copy as picture and paste) below. What is the MAD of this forecast? What is the MAPE?

Solutions

Expert Solution

a)

Moving Average
1 700
2 740
3 710
4 695 716.67
5 760 715.00
6 810 721.67
7 750 755.00
8 820 773.33
9 730 793.33
10 710 766.67
11 720 753.33
12 760 720.00
13 800 730.00
14 820 760.00
15 770 793.33
16 740 796.67
17 690 776.67
18 680 733.33
19 710 703.33
20 740 693.33
period demand forcast forecast error=demand value-forecast value absolute forecast error squared forcast error Abs %error
t Dt Ft et=Dt-Ft | et | (et)² | et/Dt |
1 700
2 740
3 710
4 695 716.667 -21.67 21.67 469.44 3.12%
5 760 715.000 45.00 45.00 2025.00 5.92%
6 810 721.667 88.33 88.33 7802.78 10.91%
7 750 755.000 -5.00 5.00 25.00 0.67%
8 820 773.333 46.67 46.67 2177.78 5.69%
9 730 793.333 -63.33 63.33 4011.11 8.68%
10 710 766.667 -56.67 56.67 3211.11 7.98%
11 720 753.333 -33.33 33.33 1111.11 4.63%
12 760 720.000 40.00 40.00 1600.00 5.26%
13 800 730.000 70.00 70.00 4900.00 8.75%
14 820 760.000 60.00 60.00 3600.00 7.32%
15 770 793.333 -23.33 23.33 544.44 3.03%
16 740 796.667 -56.67 56.67 3211.11 7.66%
17 690 776.667 -86.67 86.67 7511.11 12.56%
18 680 733.333 -53.33 53.33 2844.44 7.84%
19 710 703.333 6.67 6.67 44.44 0.94%
20 740 693.333 46.67 46.67 2177.78 6.31%
et=Dt-Ft | et | (et)² | et/Dt |
total sum= 3.33 803.33 47266.67 107.26%
n= 17 17 17 17
average= 0.20 47.25 2780.39 6.31%


      
MAD=   Σ |et|/n =    47.25
      

      
MAPE=   Σ | et/Dt |/n =    6.31%

b)

Exponential forecast
1 700 700
2 740 700
3 710 708
4 695 708.4
5 760 705.72
6 810 716.576
7 750 735.2608
8 820 738.2086
9 730 754.5669
10 710 749.6535
11 720 741.7228
12 760 737.3783
13 800 741.9026
14 820 753.5221
15 770 766.8177
16 740 767.4541
17 690 761.9633
18 680 747.5706
19 710 734.0565
20 740 729.2452
period demand forcast forecast error=demand value-forecast value absolute forecast error squared forcast error Abs %error
t Dt Ft et=Dt-Ft | et | (et)² | et/Dt |
1 700
2 740
3 710 708.000 2.00 2.00 4.00 0.28%
4 695 708.400 -13.40 13.40 179.56 1.93%
5 760 705.720 54.28 54.28 2946.32 7.14%
6 810 716.576 93.42 93.42 8728.04 11.53%
7 750 735.261 14.74 14.74 217.24 1.97%
8 820 738.209 81.79 81.79 6689.83 9.97%
9 730 754.567 -24.57 24.57 603.53 3.37%
10 710 749.654 -39.65 39.65 1572.40 5.59%
11 720 741.723 -21.72 21.72 471.88 3.02%
12 760 737.378 22.62 22.62 511.74 2.98%
13 800 741.903 58.10 58.10 3375.31 7.26%
14 820 753.522 66.48 66.48 4419.31 8.11%
15 770 766.818 3.18 3.18 10.13 0.41%
16 740 767.454 -27.45 27.45 753.73 3.71%
17 690 761.963 -71.96 71.96 5178.72 10.43%
18 680 747.571 -67.57 67.57 4565.79 9.94%
19 710 734.057 -24.06 24.06 578.72 3.39%
20 740 729.245 10.75 10.75 115.67 1.45%
forecast error=demand value-forecast value absolute forecast error squared forcast error Abs %error
et=Dt-Ft | et | (et)² | et/Dt |
total sum= 116.98 697.76 40921.92 92.47%
n= 18 18 18 18
average= 6.50 38.76 2273.44 5.14%


      
MAD=   Σ |et|/n =    38.76
      

      
MAPE=   Σ | et/Dt |/n =    5.14%

Thanks in advance!

revert back for doubt

Please upvote



Related Solutions

ID X Y 1 2 3 2 3 6 3 4 6 4 5 7 5...
ID X Y 1 2 3 2 3 6 3 4 6 4 5 7 5 8 7 6 5 7 7 6 7 8 8 8 9 7 8 10 12 11 Test the significance of the correlation coefficient. Then use math test scores (X) to predict physics test scores (Y).  Do the following: Create a scatterplot of X and Y. Write the regression equation and interpret the regression coefficients (i.e., intercept and slope). Predict the physics score for each....
[4 5 5 2 4 4 6 3 3 7 5 3 6 3 4 4...
[4 5 5 2 4 4 6 3 3 7 5 3 6 3 4 4 6 5 4 5 3 7 5 5 4 2 6 5 6 6] This is my dataset Find mean, median, mode, variance, standard deviation, coefficient of variation, range, 70th percentile, 3rdquartile of the data and skewness and define what each of these statistics measure. For example, mean is a measure of the central tendency, what about the rest? Use Chebyshev’s rule to find...
[4 5 5 2 4 4 6 3 3 7 5 3 6 3 4 4...
[4 5 5 2 4 4 6 3 3 7 5 3 6 3 4 4 6 5 4 5 3 7 5 5 4 2 6 5 6 6] This is my dataset Split the dataset in two equal parts. You have 30 datavalues. If you split the data in two equal parts each part will contain 15 data values.  Call the first part Y and second part X.Draw scatter plot of the 2 datasets, X being on the horizontal...
Monthly returns for two stocks are given below: Month 1 2 3 4 5 6 7...
Monthly returns for two stocks are given below: Month 1 2 3 4 5 6 7 8 9 10 11 12 rA 4.10% 1.12% 1.66% −0.18% −4.71% −0.60% −0.91% 1.02% 1.69% −0.51% 1.42% 2.52% rB −3.36% −1.93% −0.45% 0.34% 4.27% 8.48% 1.86% 4.10% 6.41% −5.24% −1.06% 1.40% (a) Calculate the correlation between the returns of these two stocks. Consider a portfolio of the two stocks weighted 60:40 at t = 0. (b) Calculate the returns on the rebalanced portfolio for...
Consider the following time series data. Month 1 2 3 4 5 6 7 Value 22...
Consider the following time series data. Month 1 2 3 4 5 6 7 Value 22 13 18 11 19 22 14 Round your answers to two decimal places. a. Compute MSE using the most recent value as the forecast for the next period. Mean squared error is What is the forecast for month ? b. Compute MSE using the average of all data available as the forecast for the next period. Mean squared error is What is the forecast...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 23...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 23 15 20 12 18 22 15 (a) Choose the correct time series plot. (i) (ii) (iii) (iv) - Select your answer -Graph (i)Graph (ii)Graph (iii)Graph (iv)Item 1 What type of pattern exists in the data? - Select your answer -Positive trend patternHorizontal patternVertical patternNegative trend patternItem 2 (b) Develop a three-month moving average for this time series. Compute MSE and a forecast for month...
Consider the following time series data. Month 1 2 3 4 5 6 7 Value 25...
Consider the following time series data. Month 1 2 3 4 5 6 7 Value 25 14 21 13 20 24 16 (a) Construct a time series plot. What type of pattern exists in the data? The data appear to follow a seasonal pattern. The data appear to follow a cyclical pattern.     The data appear to follow a trend pattern. The data appear to follow a horizontal pattern. (b) Develop the three-month moving average forecasts for this time series. Month...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 23...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 23 14 19 13 19 24 14 (a) Compute MSE using the most recent value as the forecast for the next period. If required, round your answer to one decimal place. What is the forecast for month 8? If required, round your answer to one decimal place. Do not round intermediate calculation. (b) Compute MSE using the average of all the data available as the...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 24...
Consider the following time series data: Month 1 2 3 4 5 6 7 Value 24 12 20 13 18 24 14 (a) Compute MSE using the most recent value as the forecast for the next period. If required, round your answer to one decimal place. What is the forecast for month 8? If required, round your answer to one decimal place. Do not round intermediate calculation. (b) Compute MSE using the average of all the data available as the...
Consider the following time series data: Month 1 2 3 4 5 6 7 8 Value...
Consider the following time series data: Month 1 2 3 4 5 6 7 8 Value 24 13 21 12 20 23 15 25 Compute MSE using the most recent value as the forecast for the next period. What is the forecast for month 9? Compute MSE using the average of all the data available as the forecast for the next period. What is the forecast for month 9? Which method appears to provide the better forecast?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT