Question

In: Physics

A loaded truck of mass 3000 kg moves on a level road at a constant speed...

A loaded truck of mass 3000 kg moves on a level road at a constant speed of 6.000 m/s. The frictional force on the truck from the road is 1000 N. Assume that air drag is negligible. (a) How much work is done by the truck engine in 10.00 min? (b) After 10.00 min, the truck enters a hilly region whose inclination is30∘and continues to move with the same speed for another 10.00 min. What is the total work done by the engine during that period against the gravitational force and the frictional force? (c) What is the total work done by the engine in the full 20 min?

Solutions

Expert Solution

Given data:

Mass = 3000 Kg

g = acceleration due to gravity = 9.8 m/s^2

velocity = 6 m/s

Work = (Force*Displacement)

Engine Give work to truck to overcum resistance.( on level road, friction resistance and on inclined road Friction + component of weight of truck)


Related Solutions

A 3000 kg truck is driving along a straight road at a constant speed of 60...
A 3000 kg truck is driving along a straight road at a constant speed of 60 km/hr. A 800 kg car starts accelerating from stationary as the truck goes past it. Ignore air resistance. (a) How far has the truck travelled after 5 minutes? Give your answer in kilometres. -2 (b) If the car accelerates at 6 ms (c) How far will the car have travelled when it reaches this speed? (d) What is the force associated with of motion...
as a pick up truck travels along a level stretch of road with constant speed, most...
as a pick up truck travels along a level stretch of road with constant speed, most of the power developed by the engine is used to compensate for the energy transformation due to friction force is exerted on the pick up truck by the air in the road. If the power developed by the engine is 2.23 hp, calculate the total friction force acting on the pick up truck (in N) when it is moving at speed of 29 m/s....
The loaded cab of an elevator has a mass of 3.6 × 103 kg and moves...
The loaded cab of an elevator has a mass of 3.6 × 103 kg and moves 216 m up the shaft in 17 s at constant speed. At what average rate does the force from the cable do work on the cab?
Suppose a truck of mass 1800.0 kg is moving on a road under the influence of...
Suppose a truck of mass 1800.0 kg is moving on a road under the influence of 2400.0 N forward forces and 400.0 N of resistive force due to air. How can you estimate net force acting on it, acceleration of the truck? If it starts from rest how much time take, to travel 400.0 m distance? Increase in mass of truck, how it changes acceleration of it without change in external force on it? For motion of truck which Newton's...
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s...
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s rear-ends a 821-kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision. vcar = ___________________ m/s vtruck = ____________________ m/s
A wire with a linear mass density of 1.08 g/cm moves at a constant speed on...
A wire with a linear mass density of 1.08 g/cm moves at a constant speed on a horizontal surface and the coefficient of kinetic friction between the wire and the surface is 0.250. If the wire carries a current of 1.31 A westward and moves horizontally to the south, determine the magnitude and direction of the smallest magnetic field that can accomplish this. magnitude ____ T direction ______
A 2.0 kg glider moves in the +x direction at constant speed 2.0 m/s on a...
A 2.0 kg glider moves in the +x direction at constant speed 2.0 m/s on a frictionless horizontal air-track. The second glider of mass 1.0 kg moves in the –x-direction at a constant speed of 2.0 m/s on the same air track towards the first glider. What is the speed of the center of mass of the two gliders right after the collision?
A Honda Civic 1.2 has a mass of 680 kg moves up on inclined road (0...
A Honda Civic 1.2 has a mass of 680 kg moves up on inclined road (0 5) with a velocity of 50 km/h (3000 rpm crankshaft speed). a) Compute resistances which prevents the car to move, b) Determine the available tractive effort. (wheelbase-22 m center of gravity. 70 cm high distance from centre of gravity to the front wheels axil is 0.7m, friction coefficient-0.4. driveline efficiency 92%, gear reduction ratio 4.2, tire size 17570R13 (wheel diameter 13 inch or 40...
Mass m = 0.1 kg moves to the right with speed v = 0.54 m/s and...
Mass m = 0.1 kg moves to the right with speed v = 0.54 m/s and collides with an equal mass initially at rest. After this inelastic collision the system retains a fraction = 0.9 of its original kinetic energy. If the masses remain in contact for 0.01 secs while colliding, what is the average force in N between the masses during the collision? Hints: All motion is in 1D. Ignore friction between the masses and the horizontal surface. You...
A truck 'A' of mass 1700 kg traveling east at a speed of 24 m/s crashes...
A truck 'A' of mass 1700 kg traveling east at a speed of 24 m/s crashes into a smaller, 1100 kg parked wagon 'B'. The two vehicles remain joined together after the collision. What is the velocity of the wreck immediately after the collision? Neglect friction against the road. fAns: 14.6 m/s]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT