In: Economics
Assume this is a demand and supply schedule for a one-year discount bond with face value of $1,000. Complete the column for corresponding interest rate.
Interest rate (%) |
Price bond |
Quantity demanded |
Quantity supplied |
_______ |
1000 |
0 |
900 |
________ |
900 |
200 |
850 |
________ |
800 |
400 |
800 |
________ |
700 |
600 |
750 |
________ |
600 |
800 |
700 |
________ |
500 |
1000 |
650 |
b. Given the above demand and supply schedules for the discount bond market, solve for equilibrium price, quantity, and interest rate.
Demand equation: PB = ________________________
Supply equation: PB = _________________________
Equilibrium price P* = _________________________
Equilibrium quantity Q* = _______________________
Equilibrium interest rate r* = _______________________
(a) If bond interest rate is R% per year, then
R = [(Face value / Bond price) - 1] x 100 = [($1,000 / P)] - 1] x 100 [Where P: Bond price]
(i) P = $1,000
R = [(1,000 / 1,000) - 1] x 100 = (1 - 1) x 100 = 0 x 100 = 0%
(ii) P = $900
R = [(1,000 / 900) - 1] x 100 = (1.1111 - 1) x 100 = 0.1111 x 100 = 11.11%
(iii) P = $800
R = [(1,000 / 800) - 1] x 100 = (1.25 - 1) x 100 = 0.25 x 100 = 25%
(iv) P = $700
R = [(1,000 / 700) - 1] x 100 = (1.4286 - 1) x 100 = 0.4286 x 100 = 42.86%
(v) P = $600
R = [(1,000 / 600) - 1] x 100 = (1.6667 - 1) x 100 = 0.6667 x 100 = 66.67%
(vi) P = $500
R = [(1,000 / 500) - 1] x 100 = (2 - 1) x 100 = 11 x 100 = 100%
(b)
(i) Demand equation: PB = a - bQ
When Q = 0, PB = 1,000
1,000 = a - 0
a = 1,000
When Q = 200, PB = 900
900 = a - 200b
900 = 1,000 - 200b
200b = 100
b = 0.5
Demand equation: PB = 1,000 - 0.5Q
(ii) Supply equation: PB = c + dQ
When Q = 900, P = 1,000
1,000 = c + 900d......(1)
When Q = 850, P = 900
900 = c + 850d.........(2)
(1) - (2) yields: 50d = 100
d = 2
c = 1,000 - 900d [From (1)] = 1,000 - (900 x 2) = 1,000 - 1,800 = - 800
Supply equation: PB = - 800 + 2Q
(iii) In equilibrium, quantity demanded equals quantity supplied.
1,000 - 0.5Q = - 800 + 2Q
2.5Q = 1,800
Q* = 720
P* = 1,000 - (0.5 x 720) = 1,000 - 360 = 640
(iv) When P = 640,
r* = [(1,000 / 640) - 1] x 100 = (1.5625 - 1) x 100 = 0.5625 x 100 = 56.25%