Question

In: Physics

Three point charges are aligned along the x axis.Three point charges lie along the x-axis in...

Three point charges are aligned along the x axis.Three point charges lie along the x-axis in the x y coordinate plane. A charge of −4.00 nC is 0.500 m to the left of the origin. A charge of 5.00 nC is at the origin. A charge of 3.00 nC is 0.800 m to the right of the origin.

Find the electric field (in N/C) at the following positions.

(a)    (4.00, 0)

(b)    (0, 4.00)

Solutions

Expert Solution


Related Solutions

Two point charges lie on the x axis. A charge of + 2.50 pC is at...
Two point charges lie on the x axis. A charge of + 2.50 pC is at the origin, and a charge of − 4.70 pC is at x=−12.0cm. What third charge should be placed at x=+24cm so that the total electric field at x=+12.0cm is zero?
Two point charges lie on the x axis. A charge of 6.5 μC is at the...
Two point charges lie on the x axis. A charge of 6.5 μC is at the origin, and a charge of -9.5 μC is at x=10.0cm. What is the net electric field at x=−4.0cm? What is the net electric field at x=+4.0cm?
Two point charges lie on the x axis. A charge of + 2.60 pC is at...
Two point charges lie on the x axis. A charge of + 2.60 pC is at the origin, and a charge of − 4.60 pC is at x=−10.0cm. What third charge should be placed at x=+26cm so that the total electric field at x=+13.0cm is zero?
1. 1). Three point charges are located along the x-axis; -2.0 nC at x = -2.0...
1. 1). Three point charges are located along the x-axis; -2.0 nC at x = -2.0 m, +5.0 nC at x = +3.0 m, and 1.0 nC at x = 1.0 m. Calculate the net electric field for both magnitude AND direction at the origin due to these three source charges. NOTE: (+) means pointing to the right and (-) means pointing to the left in terms of the field
Two point charges lie on the x axis. A charge of -2.3 x 10-6 C is...
Two point charges lie on the x axis. A charge of -2.3 x 10-6 C is at x=-5 cm, and a charge of +9.2 x 10-6 C is at x=12 cm. At what position x would a third positive charge be in equilibrium?
Two point charges q and 2q lie on the x-axis. Which region(s) on the x-axis include a point where the electric field due to the two point charges is zero?
Two point charges q and 2q lie on the x-axis. Which region(s) on the x-axis include a point where the electric field due to the two point charges is zero?(a) To the right of 2q(b) Between 2q and point P(c) Between point P and q(d) To the left of q(e) Both (a) and (c)(f) Both (b) and (d)
Three point charges lie along a straight line as shown in the figure below, where q1...
Three point charges lie along a straight line as shown in the figure below, where q1 = 5.58 µC, q2 = 1.54 µC, and q3 = -1.88 µC. The separation distances are d1 = 3.00 cm and d2 = 2.00 cm. Calculate the magnitude and direction of the net electric force on each of the charges. Three charges lie along a horizontal line. Positive charge q1 is on the left. Positive charge q2 is a distance d1 to the right...
Three point charges lie along a straight line as shown in the figure below, where q1...
Three point charges lie along a straight line as shown in the figure below, where q1 = 6.12 µC, q2 = 1.57 µC, and q3 = -2.08 µC. The separation distances are d1 = 3.00 cm and d2 = 2.00 cm. Calculate the magnitude and direction of the net electric force on each of the charges. (a) q1? (b) q2? (c) q3?
Three point charges lie along a straight line as shown in the figure below, where q1...
Three point charges lie along a straight line as shown in the figure below, where q1 = 6.48 µC, q2 = 1.42 µC, and q3 = -2.08 µC. The separation distances are d1 = 3.00 cm and d2 = 2.00 cm. Calculate the magnitude and direction of the net electric force on each of the charges. Three charges lie along a horizontal line. Positive charge q1 is on the left. Positive charge q2 is a distance d1 to the right...
Three charges lie on a x-y plane: q1 = +12.0 nC on the y-axis at y...
Three charges lie on a x-y plane: q1 = +12.0 nC on the y-axis at y = +0.400m; q2 = -9.00microC on the x=axis at x = 0; q3 = -5.00microC on the x-axis at x = +0.300m. A. Use the component method to determine the net force on q1 due to other charges (show magnitude and direction). B. Confirm answer of net force by using the geometrical (graphical) method to add the individual force vectors (not components). Choose a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT