Question

In: Statistics and Probability

1. Load the regression data in the le called wagedata.csv and answer the following questions: (a)...

1. Load the regression data in the le called wagedata.csv and answer the following questions:
(a) Create an interaction between Ability and PhD
(b) Run a regression with the interaction a constant Ability and PhD. Write down you estimators
and the t-statistics
(c) Compute the di erence-in-di erence estimate and write down you answer.
(d) Test if the di erence is signi cant by showing relevant steps, and write down the conclusion to
the test.
2. Which of these photos shows evidence of heteroskedasticity?
0 20 40 60 80 100 120
0 100 200 300 400 500 600
x1
y1
−6 −4 −2 0 2 4 6
−10 0 10 20 30
x
y
−6 −4 −2 0 2 4 6
−10 −5 0 5 10
x
y
−6 −4 −2 0 2 4 6
−10 −5 0 5 10 15
x
y
3. Load the dataset called ec122a.csv and decide the appropriate regression to run. Write down what
transformations, corrections, etc... you make and why.

Data

Wage;"Ability";"Phd"
30 2148858244105;-10 0874543747999;1
21 2139481124597;-0 590192820738451;1
0 804274100356348;18 2611120427467;1
21 2841837231414;-1 56022339054444;1
19 9701441966751;-0 270217314022561;1
-19 3505986647068;15 2847691646256;1
-37 5318232168738;26 0961104031439;1
-27 5104548523827;7 5761567533525;1
1 12580739232134;-1 18594902993318;1
8 46653345914067;0 0785472499891622;1
-4 3851186614386;12 1320105514616;1
3 50685341593623;7 34914917101494;1
-13 9237294518445;18 4776393201793;1
8 19952131952363;3 24253596299393;1
2 061035907599;-0 483248819158479;1
7 77793037392366;5 98655277801752;1
-6 30291122168363;19 5012071181202;1
9 8638921608847;17 2307860456577;1
-1 60927411206267;0 627619361224518;1
18 2636750628683;9 55865292554422;1
-19 85280408247;32 3061680317419;1
-38 3633350768018;27 9436433893924;1
-40 7205010397063;31 6850695595438;1
-56 2602894197782;35 0681431228772;1
-32 9991761971437;27 6280924263471;1
9 7479459402353;7 57174198307181;0
3 92900982953838;0 861977409866384;0
50 248108939599;33 5000136378381;0
30 7461400746423;25 8930976678625;0
49 9814106320709;46 0773964388559;0
37 9566059786407;22 4655728587151;0
68 6497575622049;49 1421665303397;0
61 0701238471535;32 6494107219151;0
55 7189943229771;34 2491817925178;0
51 109332042575;48 4620545148998;0
56 0861713803033;56 2611865964331;0
40 516170174837;29 6930159318191;0
44 0586166449751;35 2492085855466;0
59 6616305513546;45 3875176058839;0
30 4331767384442;38 1275770320187;0
54 8625391374503;41 2616692882961;0
23 5581065455008;42 2396991920984;0
51 6104307198847;49 4530276941521;0
68 8499222925911;57 375001650011;0
34 9282337106992;33 7966475747671;0
59 6531629794339;32 9891986645948;0
48 8530160146515;42 5814753560819;0
41 8592579309319;38 2969055544136;0
68 7653893378851;59 1407240737376;0
57 2611898080186;55 2997953033722;0
71 4317975269271;59 8575740860399;0
84 3041078190792;56 9187686247403;0
86 8127563905414;57 8447954875125;0
53 8947609338275;42 9180372026626;0
75 451187082937;66 4714537888208;0
71 8524802636783;66 5647387578261;0
72 7015631893814;63 9321052241629;0
68 5345645066989;46 9435171993065;0
57 4027012602536;40 8696600009591;0
94 3208057977659;70 4812637532467;0
73 3865424233984;56 9041537923933;0
88 8183392221799;70 0278010012836;0
73 3087112512961;56 9953148483697;0
86 3886013131513;60 5180523355662;0
67 2021941169906;51 0590708916793;0
118 375388309556;94 4572602759228;0
60 6789396907979;61 1500381246522;0
98 719626489431;77 9170774341119;0
71 443350318515;66 314958140777;0
64 6034850016771;58 4809681916044;0
73 1618976038289;65 1237350851343;0
60 4746000022732;63 0423330904353;0
120 289733522426;93 5416148319245;0
107 032173927375;79 1334457282595;0
91 8986502218894;74 6191805319747;0
80 7706797354782;69 0717782611234;0
94 9972106243549;76 4438198039696;0
69 4704718368837;66 2502018108482;0
100 848924827906;80 8871627341593;0
126 836422964446;84 3088129083253;0
123 570430325546;96 9617142388936;0
64 9631783153722;69 8731666565007;0
94 8537176555163;83 4972763448062;0
130 547827259813;91 5406501517776;0
93 4716274384042;79 6440870678146;0
103 69870631698;79 8560598931133;0
90 4185801410255;76 4545817393735;0
87 0684258802465;84 5415174865785;0
145 840161057534;111 032359346546;0
123 719439438811;98 0032391174047;0
117 321770358635;90 845864156288;0
124 037150698884;105 148580858475;0
114 982603027777;94 3143209557192;0
139 514587413482;113 254090704761;0
109 802729838307;91 8569567410886;0
111 534270833463;94 1269472639582;0
99 5545891547564;78 9229661614192;0
95 841141946642;85 3461049648653;0
113 258297584026;96 8252063828309;0
124 340999773273;99 8886185674963;0

Solutions

Expert Solution

Answer:

BY using,given data

(a) By using the scatter plot we can identify the relation between the Ability and Phd.

From the above plot, we can say that if the ability of students increases then the chances of he pursued PhD is decreased.

i.e. Negative correlation in ability and PhD.

(B) The Dependent variable in this data is PhD and

Independent variable in wages and Ability

Dependent variable PhD is not continuous it in categorical form

so ,we used the logistic regression model here,

Model = glm(Phd~Ability+Wage)

Summary.glm(Model)

glm(formula = Phd ~ Ability + Wage)

Coefficients: Estimate Std. Error t value Pr(>|t|)   

(Intercept) 0.799626 0.048791 16.389 < 2e-16 ***
Ability 0.004379 0.002086 2.099 0.0384 *  
Wage -0.011972 0.001347 - 8.886 3.41e-14 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The coefficient of wage = - 0.011972

The Coefficient of Ability = 0.004379

Test Hypothesis:

H0: The variable is insignificant.

against,

H1: The variable is significant.

Test Statistic:

T-statistic is usefull

t-value of Ability = 2.099

t-value of wage = -8.886

Decision Rule: If p-value is greater than 0.05 level of significance then ,we accept the null hypothesis.
From the above results, p-values are less than 0.05.
we reject the null hypothesis here.

i.e. both are variable significant.

i.e. both variable wage and Ability are important in model.


Related Solutions

Load the regression data in the file called wagedata.csv and answer the following questions: (a) Create...
Load the regression data in the file called wagedata.csv and answer the following questions: (a) Create an interaction between Ability and PhD (b) Run a regression with the interaction a constant Ability and PhD. Write down you estimators and the t-statistics (c) Compute the difference-in-difference estimate and write down you answer. (d) Test if the difference is significant by showing relevant steps, and write down the conclusion to the test. Wage Ability Phd 3.52942833628898 2.57892317214096 1 11.5241044105103 0.217444617867018 1 6.43708200805673...
Given the demand data answer the following questions after estimating your regression model of demand for...
Given the demand data answer the following questions after estimating your regression model of demand for Good 1. Quantity demanded of Good 1 is given by Q1 and the price of Good 1 is given by P1. The price of Good 2 is given by P2. Use a linear-linear functional form (i.e., do not transform the variables in anyway, such as with natural logarithms). Many economists refer to this as a “lin-lin” functional form. Evaluate elasticities at the sample means...
Based on the EViews result in Table 1, answer the following questions. Table 1: Estimated Regression...
Based on the EViews result in Table 1, answer the following questions. Table 1: Estimated Regression Result Dependent Variable: LGDP Method: Least Squares Sample: 2000Q1 2012Q4 Included observations: 52 Variable Coefficient Std. Error t-Statistic Prob. LM2 0.796910 0.032383 24.60868 0.0000 LREER -0.060125 0.065220 -0.921892 0.3613 LSDR 0.051745 0.074618 0.693465 0.4914 LTBR 0.029174 0.007715 3.781436 0.0004 C 2.795406 0.427355 6.541183 0.0000 R-squared 0.986591 Mean dependent var 13.28409 Adjusted R-squared 0.985450 S.D. dependent var 0.429315 S.E. of regression 0.051786 Akaike info criterion...
Based on the EViews result in Table 1, answer the following questions. Table 1: Estimated Regression...
Based on the EViews result in Table 1, answer the following questions. Table 1: Estimated Regression Result Dependent Variable: LGDP Method: Least Squares Sample: 2000Q1 2012Q4 Included observations: 52 Variable Coefficient Std. Error t-Statistic Prob.   LM2 0.796910 0.032383 24.60868 0.0000 LREER -0.060125 0.065220 -0.921892 0.3613 LSDR 0.051745 0.074618 0.693465 0.4914 LTBR 0.029174 0.007715 3.781436 0.0004 C 2.795406 0.427355 6.541183 0.0000 R-squared 0.986591     Mean dependent var 13.28409 Adjusted R-squared 0.985450     S.D. dependent var 0.429315 S.E. of regression 0.051786     Akaike info criterion...
Answer the following elasticity questions: E = ∆% Q / ∆% P 1. The following data...
Answer the following elasticity questions: E = ∆% Q / ∆% P 1. The following data is from the demand for chocolate cookies: Producer reduces the price of some cookies from 12 to 10 cents. Find out that the quantities sold increased from 210 to 250 units: a) Calculate the price elasticity of cookies. b) Present the graph; Indicate if it is Price Elasticity of Demand or Supply. c) if it is elastic, inelastic or unitary. d) If the price...
3. Load the dataset called ec122a.csv and decide the appropriate regression to run. Write down what...
3. Load the dataset called ec122a.csv and decide the appropriate regression to run. Write down what transformations, corrections, etc... you make and why. y1 x1 5.3478787576716 -0.930542577578737 -69.4411002445282 -14.3360876802962 17.6647698924475 1.81741420842464 98.6511466667161 16.8769469917607 14.7965900933862 1.44147861051093 -34.5302655286703 -8.00737844994315 93.0899709372717 15.9601981407006 9.21693205816442 0.677367144474178 82.6007511115692 13.940352476942 115.798113882096 21.2544523041556 210.387049747658 38.2407928740359 25.53810654411 2.87106608048978 103.832140647001 18.1287219709914 69.9887102526973 11.9894172917371 115.53192498448 20.8016798770016 121.344292025264 22.0189019228638 92.7341812552436 15.9508245127554 141.336831165046 25.3838968113616 43.9676084746945 6.62783843142594 170.312498248916 30.6056891002234 100.141722965535 18.0744156617512 135.127526516403 25.1557427275658 35.4910615569294 5.34067840867235 49.0886162426323 7.66630180243485 183.23305880313 33.6747888141339 133.899669788226 31.0484776835843 119.472386558899 19.6774321421239 158.382012262513...
Use the following data to answer the questions below:
Use the following data to answer the questions below:             Q                 VC             MC           AVC              1                 $10              ___            ___                                   2                16              ___            ___                       3                20              ___            ___                                   4                25              ___            ___              5                31              ___            ___              6                  38              ___            ___                  7                  46              ___            ___8                  55              ___            ___9                  65              ___            ___         a. Calculate the marginal cost and average variable cost for each level of production.b. How much would the firm produce if it could sell its product for...
Use the following linear regression equation to answer the questions. x3 = −16.2 + 3.8x1 +...
Use the following linear regression equation to answer the questions. x3 = −16.2 + 3.8x1 + 9.6x4 − 1.2x7 (a) Which variable is the response variable? x7 x1 x3 x4 Which variables are the explanatory variables? (Select all that apply.) x4 x7 x1 x3 (b) Which number is the constant term? List the coefficients with their corresponding explanatory variables. constant x1 coefficient x4 coefficient x7 coefficient (c) If x1 = 3, x4 = -1, and x7 = 1, what is...
Use the following linear regression equation to answer the questions. x1 = 1.3 + 3.6x2 –...
Use the following linear regression equation to answer the questions. x1 = 1.3 + 3.6x2 – 8.3x3 + 2.0x4 (Use the following linear regression equation to answer the questions. x1 = 1.3 + 3.6x2 – 8.3x3 + 2.0x4 (a) Which variable is the response variable? x3x2     x1x4 Which variables are the explanatory variables? (Select all that apply.) x3x2x4x1 (b) Which number is the constant term? List the coefficients with their corresponding explanatory variables. constant x2 coefficient x3 coefficient x4 coefficient (c)...
Use the following linear regression equation to answer the questions. x1 = 1.1 + 3.0x2 –...
Use the following linear regression equation to answer the questions. x1 = 1.1 + 3.0x2 – 8.4x3 + 2.3x4 Suppose x3 and x4 were held at fixed but arbitrary values and x2 increased by 1 unit. What would be the corresponding change in x1? Suppose x2 increased by 2 units. What would be the expected change in x1? Suppose x2 decreased by 4 units. What would be the expected change in x1? (e) Suppose that n = 13 data points...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT