Question

In: Advanced Math

Find the volume of the solid bounded by the surface z =5 +(x-4) ^2+2y and the...

Find the volume of the solid bounded by the surface z =5 +(x-4) ^2+2y and the planes x = 3, y = 3 and coordinate planes.

a. First find the volume by actual calculation.

b. Estimate the volume by dividing the region into nine equal squares and evaluating the functional value at the mid-point of the respective squares and multiplying with the area and summing it. Find the error from step a.

c. Then estimate the volume by dividing each sub-square above into 4 sub-squares and follow the process/steps in (b) above. Find the error from step a.

d. Keep repeating step b to a reasonable number to minimize the errors from step a.

Solutions

Expert Solution


Related Solutions

Find the center of mass of the solid bounded by z = 4 - x^2 -...
Find the center of mass of the solid bounded by z = 4 - x^2 - y^2 and above the square with vertices (1, 1), (1, -1), (-1, -1), and (-1, 1) if the density is p = 3.
Find the volume of the solid obtained by rotating the region bounded by x = 4-...
Find the volume of the solid obtained by rotating the region bounded by x = 4- (y-1) ^ 2; x + y = 4 on the X axis, you must graph the region
Find the center of mass of the solid bounded by the surfaces z = x ^...
Find the center of mass of the solid bounded by the surfaces z = x ^ 2 + y ^ 2 and z = 8-x ^ 2-y ^ 2. Consider that the density of the solid is constant equal to 1. Mass= ? x=? y=? z=? Step by step please
Find the volume of the given solid. Under the plane 3x + 2y − z =...
Find the volume of the given solid. Under the plane 3x + 2y − z = 0 and above the region enclosed by the parabolas y = x2 and x = y2 (No Response)  
4) Find the volume of the solid formed by the region bounded by the graphs of...
4) Find the volume of the solid formed by the region bounded by the graphs of y= x3 , y=x for x=0 and x=1 -Sketch the region bounded by the graphs of the functions and find the area of the region bounded by the graphs of y=x-1 and y= (x − 1)3 -calculate the arc length of the graph y= x=1 to x=2 14x7 + 101x5 from -Use the washer method to find the volume of the solid formed by...
Find the volume of the solid obtained by rotating the region bounded by y = x...
Find the volume of the solid obtained by rotating the region bounded by y = x 3 , y = 1, x = 2 about the line y = −3. Sketch the region, the solid, and a typical disk or washer (cross section in xy-plane). Show all the work and explain thoroughly.
Find the center of mass of the solid S bounded by the paraboloid z = 4...
Find the center of mass of the solid S bounded by the paraboloid z = 4 x^ 2 + 4 y^ 2 and the plane z = 4. Assume the density is constant.
Find the volume of the solid generated by revolving the region bounded by y = sqrt(x)...
Find the volume of the solid generated by revolving the region bounded by y = sqrt(x) and the lines and y=2 and x=0 about: 1) the x-axis. 2) the y-axis. 3) the line y=2. 4) the line x=4.
Let S be the solid bounded by the surfaces z=2sqrt(x^2 + y^2) and z=2. Suppose that...
Let S be the solid bounded by the surfaces z=2sqrt(x^2 + y^2) and z=2. Suppose that thedensity of S at (x,y,z) is equal to z. Set up an integral for the mass of S using spherical coordinates.
Find the volume of the solid region inside of the surface given by ? 2 +...
Find the volume of the solid region inside of the surface given by ? 2 + ? 2 + ? 2 = 8 and between the upper and lower halves of the cone given by ? 2 = ? 2 + ? 2 by setting up and evaluating an appropriate triple integral (in the coordinate system of your choice).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT