Question

In: Physics

A 70.0 kg70.0 kg ice hockey goalie, originally at rest, has a 0.280 kg0.280 kg hockey...

A 70.0 kg70.0 kg ice hockey goalie, originally at rest, has a 0.280 kg0.280 kg hockey puck slapped at him at a velocity of 33.5 m/s.33.5 m/s. Suppose the goalie and the puck have an elastic collision, and the puck is reflected back in the direction from which it came. What would the final velocities ?goalievgoalie and ?puckvpuck of the goalie and the puck, respectively, be in this case? Assume that the collision is completely elastic.

?goalie=vgoalie=

m/sm/s

?puck=vpuck=

m/sm/s

Q

Solutions

Expert Solution


Related Solutions

A 70.0-kg ice hockey goalie, originally at rest, has a 0.170-kg hockey puck slapped at him...
A 70.0-kg ice hockey goalie, originally at rest, has a 0.170-kg hockey puck slapped at him at a velocity of 43.5 m/s. Suppose the goalie and the puck have an elastic collision, and the puck is reflected back in the direction from which it came. What would the final velocities of the goalie and the puck be in this case? Assume that the collision is completely elastic.
A 75.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped...
A 75.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 18.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with the...
A 80.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped...
A 80.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 18.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with the...
A 78.5kg ice hockey goalie, originally at rest, catches a 0.120kg hockey puck slapped at him...
A 78.5kg ice hockey goalie, originally at rest, catches a 0.120kg hockey puck slapped at him at a velocity of 36 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction it came. a) What would the final velocity of the puck be in this case? Be careful with the sign! b) What would the final velocity of the goalie be in this case?
A 90-kg ice hockey players collides head on with an 80-kg ice hockey player. If the...
A 90-kg ice hockey players collides head on with an 80-kg ice hockey player. If the first person exerts a force of 450N on the second player, how much force does the second player exert on the first?
An opposing player charging the net runs into the goalie for your ice hockey team, and...
An opposing player charging the net runs into the goalie for your ice hockey team, and the goalie lays motionless on the ice. When you get to him, he is conscious and alert but complaining of not being able to move. He denies having any pain and is becoming very anxious and scared. He has no difficulty breathing. You complete your initial evaluation and find all vitals to be within normal limits, but the athlete does not respond to painful...
A 0.280-kg piece of aluminum that has a temperature of -166
A 0.280-kg piece of aluminum that has a temperature of -166
Two identical pucks collide elastically on an air hockey table. Puck 1 was originally at rest;...
Two identical pucks collide elastically on an air hockey table. Puck 1 was originally at rest; puck 2 has an incoming speed of 7.96 m/s and scatters at an angle of 30° with respect to its incoming direction. What is the velocity (magnitude in m/s and direction in degrees counterclockwise from the +x-axis) of puck 1 after the collision? (Assume the +x-axis is to the right.) Magnitude: Direction:
Q1) Two identical pucks collide on an air hockey table. One puck was originally at rest....
Q1) Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a speed of 6.50 m/s and scatters to an angle of 30.0º,what is the speed of the second puck after the collision? (You may use the result that θ1−θ2=90º for elastic collisions of objects that have identical masses.) Q2)A block of mass m = 3.0 kg, moving on a frictionless surface with a speed 2.9 m/s makes a perfectly...
A 45.0-kg girl is standing on a 152-kg plank. The plank, originally at rest, is free...
A 45.0-kg girl is standing on a 152-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.55 m/s to the right relative to the plank. (Let the direction the girl is moving in be positive. Indicate the direction with the sign of your answer.) (a) What is her velocity relative to the surface of ice?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT