Question

In: Chemistry

For which of the following mixtures will Ag2SO4(s) precipitate?

For which of the following mixtures will Ag2SO4(s) precipitate?

  • 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.20 M AgNO3(aq)
  • 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.30 M AgNO3(aq)
  • 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.40 M AgNO3(aq)
  • 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.50 M AgNO3(aq)

Solutions

Expert Solution

Concepts and reason

The solubility product for the reaction is equilibrium constant, where the solid ionic compound dissociates into its ions in a solution. The solubility product is denoted as Ksp\mathrm{K}_{\mathrm{sp}}. The solubility product value relates to the saturated solution and indicates the precipitate level of the compound. The formation precipitation starts when the ionic product exceeds the solubility product.

Fundamentals

The solubility product value of the compound depends on the concentrations of its ions in a solution. Example: AB\mathrm{AB} is a solid ionic compound. Precipitation: If the solubility product value is lesser than the concentration of the ions present in the solution, the compound precipitates in the solution.

 

The given solid ionic compound is Ag2SO4\mathrm{Ag}_{2} \mathrm{SO}_{4} The equilibrium equation for the ionic compound is given below:

Therefore, the solubility product of the ionic compound is

Ksp=[Ag+]2[SO42]=1.2×105 \begin{aligned} \mathrm{K}_{\mathrm{sp}} &=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}^{2-}\right] \\ &=1.2 \times 10^{-5} \end{aligned}

The equilibrium equation has been written for the given solid ionic compound (Ag2SO4)\left(\mathrm{Ag}_{2} \mathrm{SO}_{4}\right), and the solubility product has been derived from the equilibrium equation.

 

The balanced equation for the reaction of AgNO3\mathrm{AgNO}_{3} and Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} :

The initial concentration of [Ag+]\left[\mathrm{Ag}^{+}\right] ions in AgNO3\mathrm{AgNO}_{3} is given below:

[Ag+]initial =5.0 mL×0.20mmolAgNO3 mL×1molAg+150.0+5.0)mL1molAgNO3=0.00645M \begin{array}{c} {\left[\mathrm{Ag}^{+}\right]_{\text {initial }}=\frac{5.0 \mathrm{~mL} \times \frac{0.20 \mathrm{mmol} \mathrm{AgNO}_{3}}{\mathrm{~mL}} \times \frac{1 \mathrm{molAg}^{+}}{150.0+5.0) \mathrm{mL}}}{1 \mathrm{molAgNO}_{3}}} \\ =0.00645 \mathrm{M} \end{array}

The initial concentration of [SO42]\left[\mathrm{SO}_{4}^{2-}\right] ions in Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} is given below:

[SO42]initial =150.0 mL×0.10mmolNa2SO4 mL×1 molSO421molNa2SO4(150.0+5.0)mL=0.0968M \begin{array}{c} {\left[\mathrm{SO}_{4}^{2-}\right]_{\text {initial }}=\frac{150.0 \mathrm{~mL} \times \frac{0.10 \mathrm{mmolNa}_{2} \mathrm{SO}_{4}}{\mathrm{~mL}} \times \frac{1 \mathrm{~mol} S O_{4}^{2-}}{1 \mathrm{molNa}_{2} \mathrm{SO}_{4}}}{(150.0+5.0) \mathrm{mL}}} \\ =0.0968 \mathrm{M} \end{array}

The ionic product of Ag2SO3\mathrm{Ag}_{2} \mathrm{SO}_{3} is given below:

KIP=[Ag+]initial 2[SO42]initial =(0.00645)2(0.0968)=4.0×106 \begin{aligned} \mathrm{K}_{\mathrm{IP}}=&\left[\mathrm{Ag}^{+}\right]_{\text {initial }}^{2}\left[\mathrm{SO}_{4}^{2-}\right]_{\text {initial }} \\ =&(0.00645)^{2}(0.0968) \\ &=4.0 \times 10^{-6} \end{aligned}

The ionic product (KIP)\left(\mathrm{K}_{\mathrm{IP}}\right) is less than the solubility product (Ksp)\left(\mathrm{K}_{\mathrm{sp}}\right), KIP<Ksp\mathrm{K}_{\mathrm{IP}}<\mathrm{K}_{\mathrm{sp}} \Rightarrow precipitation does not takes place.

For the mixture, 150.0mLof0.10MNa2SO4150.0 \mathrm{mLof} 0.10 \mathrm{MNa}_{2} \mathrm{SO}_{4} (aq) and 5.0mL of 0.20M AgNO 3_{3} (aq) precipitation does not take place.

The balanced equation for the reaction of AgNO3\mathrm{AgNO}_{3} and Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} is given in which the two moles of AgNO3\mathrm{AgNO}_{3} react with one mole of Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} to produce the Ag2SO4\mathrm{Ag}_{2} \mathrm{SO}_{4} precipitate. The concentration of silver ions [Ag+]\left[\mathrm{Ag}^{+}\right] and sulphate ions [SO42]\left[\mathrm{SO}_{4}^{2-}\right] has been calculated to find the ionic product. The value of ionic product is less than that of the solubility product for which the precipitation does not takes place.

 

The balanced equation for the reaction of AgNO3\mathrm{AgNO}_{3} and Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} :

The initial concentration of [Ag+]\left[\mathrm{Ag}^{+}\right] ions in AgNO3\mathrm{AgNO}_{3} is given below:

[Ag+]initial =5.0 mL×0.30mmolAgNO3 mL×1molAg+(150.0+5.0)mL1 molAgrO33=0.00968M \begin{array}{c} {\left[\mathrm{Ag}^{+}\right]_{\text {initial }}=\frac{5.0 \mathrm{~mL} \times \frac{0.30 \mathrm{mmol} \mathrm{AgNO}_{3}}{\mathrm{~mL}} \times 1 \mathrm{molAg}^{+}}{(150.0+5.0) \mathrm{mL}} \frac{1 \mathrm{~mol} \mathrm{AgrO}_{3}}{3}} \\ =0.00968 \mathrm{M} \end{array}

The initial concentration of [SO42]\left[\mathrm{SO}_{4}^{2-}\right] ions in Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} is given below:

[SO42]initial =150.0 mL×0.10mmolNa2SO4 mL×1 molSO42(150.0+5.0)mL1molNa2SO44=0.0968M \begin{array}{c} {\left[\mathrm{SO}_{4}^{2-}\right]_{\text {initial }}=\frac{150.0 \mathrm{~mL} \times \frac{0.10 \mathrm{mmolNa}_{2} \mathrm{SO}_{4}}{\mathrm{~mL}} \times 1 \mathrm{~mol} S O_{4}^{2-}}{(150.0+5.0) \mathrm{mL}} \frac{1 \mathrm{molNa}_{2} \mathrm{SO}_{4}}{4}} \\ =0.0968 \mathrm{M} \end{array}

The ionic product of Ag2SO3\mathrm{Ag}_{2} \mathrm{SO}_{3} is given below:

KIP=[Ag+]initial 2[SO42]initial =(0.00968)2(0.0968)=9.1×106 \begin{aligned} \mathrm{K}_{\mathrm{IP}}=&\left[\mathrm{Ag}^{+}\right]_{\text {initial }}^{2}\left[\mathrm{SO}_{4}^{2-}\right]_{\text {initial }} \\ =&(0.00968)^{2}(0.0968) \\ &=9.1 \times 10^{-6} \end{aligned}

The ionic product (KIP)\left(\mathrm{K}_{\mathrm{IP}}\right) is less than the solubility product (Ksp)\left(\mathrm{K}_{\mathrm{sp}}\right), KIP<Ksp\mathrm{K}_{\mathrm{IP}}<\mathrm{K}_{\mathrm{sp}} \Rightarrow precipitationdoesnottakesplace

For the mixture, 150.0mLof0.10MNa2SO4150.0 \mathrm{mLof} 0.10 \mathrm{MNa}_{2} \mathrm{SO}_{4} (aq) and 5.0mL of 0.30M AgNO 3_{3} (aq) precipitation does not take place.

The concentration of silver ions [Ag+]\left[\mathrm{Ag}^{+}\right] and sulphate ions [SO42]\left[\mathrm{SO}_{4}^{2-}\right] has been calculated to find the ionic product. The ionic product's value is less than that of the solubility product for which precipitation does not occur.

 

The balanced equation for the reaction of AgNO3\mathrm{AgNO}_{3} and Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} :

The initial concentration of [Ag+]\left[\mathrm{Ag}^{+}\right] ions in AgNO3\mathrm{AgNO}_{3} is given below:

[Ag+]initial =5.0 mL×0.40mmolAgNO3 mL×1 molAg+150.0+5.0)mLmolAgNO3(150.0+5.0)mL=0.0129M \begin{array}{c} {\left[\mathrm{Ag}^{+}\right]_{\text {initial }}=\frac{5.0 \mathrm{~mL} \times \frac{0.40 \mathrm{mmolAgNO}_{3}}{\mathrm{~mL}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}^{+}}{150.0+5.0) \mathrm{mL}} \mathrm{molAgNO}_{3}}{(150.0+5.0) \mathrm{mL}}} \\ =0.0129 \mathrm{M} \end{array}

The initial concentration of [SO42]\left[\mathrm{SO}_{4}^{2-}\right] ions in Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} is given below:

[SO42]initial =150.0 mL×0.10mmolNa2SO4 mL×1 molSO42(150.0+5.0)mL1molNa2SO44=0.0968M \begin{array}{c} {\left[\mathrm{SO}_{4}^{2-}\right]_{\text {initial }}=\frac{150.0 \mathrm{~mL} \times \frac{0.10 \mathrm{mmolNa}_{2} \mathrm{SO}_{4}}{\mathrm{~mL}} \times 1 \mathrm{~mol} \mathrm{SO}_{4}^{2-}}{(150.0+5.0) \mathrm{mL}} \frac{1 \mathrm{molNa}_{2} \mathrm{SO}_{4}}{4}} \\ =0.0968 \mathrm{M} \end{array}

The ionic product of Ag2SO3\mathrm{Ag}_{2} \mathrm{SO}_{3} is given below:

KIP=[Ag+]initial 2[SO42]initial =(0.0129)2(0.0968)=1.6×105 \begin{aligned} \mathrm{K}_{\mathrm{IP}}=&\left[\mathrm{Ag}^{+}\right]_{\text {initial }}^{2}\left[\mathrm{SO}_{4}^{2-}\right]_{\text {initial }} \\ =&(0.0129)^{2}(0.0968) \\ &=1.6 \times 10^{-5} \end{aligned}

The ionic product (KIP)\left(\mathrm{K}_{\mathrm{IP}}\right) is greater than the solubility product (Ksp)\left(\mathrm{K}_{\mathrm{sp}}\right), KIP>Ksp\mathrm{K}_{\mathrm{IP}}>\mathrm{K}_{\mathrm{sp}} \Rightarrow precipitationtakesplace

For the mixture, 150.0mLof0.10MNa2SO4150.0 \mathrm{mLof} 0.10 \mathrm{MNa}_{2} \mathrm{SO}_{4} (aq) and 5.0mL of 0.40M AgNO 3_{3} (aq) precipitation takes place.

The concentration of silver ions [Ag+]\left[\mathrm{Ag}^{+}\right] and sulphate ions [SO42]\left[\mathrm{SO}_{4}^{2-}\right] has been calculated to find the ionic product. The value of ionic product is greater than that of the solubility product; therefore, the precipitation does take place.

 

The balanced equation for the reaction of AgNO3\mathrm{AgNO}_{3} and Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} :

The initial concentration of [Ag+]\left[\mathrm{Ag}^{+}\right] ions in AgNO3\mathrm{AgNO}_{3} is given below:

The initial concentration of [SO42]\left[\mathrm{SO}_{4}^{2-}\right] ions in Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} is given below:

[SO42]initial =150.0 mL×0.10mmolNa2SO4 mL×1 molSO421molNa2SO4(150.0+5.0)mL=0.0968M \begin{array}{c} {\left[\mathrm{SO}_{4}^{2-}\right]_{\text {initial }}=\frac{150.0 \mathrm{~mL} \times \frac{0.10 \mathrm{mmolNa}_{2} \mathrm{SO}_{4}}{\mathrm{~mL}} \times \frac{1 \mathrm{~mol} S O_{4}^{2-}}{1 \mathrm{molNa}_{2} \mathrm{SO}_{4}}}{(150.0+5.0) \mathrm{mL}}} \\ =0.0968 \mathrm{M} \end{array}

The ionic product of Ag2SO3\mathrm{Ag}_{2} \mathrm{SO}_{3} is given below:

KIP=[Ag+]initial 2[SO42]initial =(0.0161)2(0.0968)=2.5×105 \begin{aligned} \mathrm{K}_{\mathrm{IP}}=&\left[\mathrm{Ag}^{+}\right]_{\text {initial }}^{2}\left[\mathrm{SO}_{4}^{2-}\right]_{\text {initial }} \\ =&(0.0161)^{2}(0.0968) \\ &=2.5 \times 10^{-5} \end{aligned}

The ionic product (KIP)\left(\mathrm{K}_{\mathrm{IP}}\right) is greater than the solubility product (Ksp)\left(\mathrm{K}_{\mathrm{sp}}\right), KIP>Ksp\mathrm{K}_{\mathrm{IP}}>\mathrm{K}_{\mathrm{sp}} \Rightarrow precipitationtakesplace

For the mixture, 150.0 mL150.0 \mathrm{~mL} of 0.10MNa2SO40.10 \mathrm{MNa}_{2} \mathrm{SO}_{4} (aq) and 5.0mL of 0.50M AgNO 3_{3} (aq) precipitation takes place.

The balanced equation for the reaction of AgNO3\mathrm{AgNO}_{3} and Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} is given in which the two moles of AgNO3\mathrm{AgNO}_{3} react with one mole of Na2SO4\mathrm{Na}_{2} \mathrm{SO}_{4} to produce the Ag2SO4\mathrm{Ag}_{2} \mathrm{SO}_{4} precipitate. The concentration of silver ions [Ag+]\left[\mathrm{Ag}^{+}\right] and sulphate ions [SO42]\left[\mathrm{SO}_{4}^{2-}\right] has been calculated to find the ionic product. The value of ionic product is greater than that of the solubility product for which the precipitation does take place.

Related Solutions

For which of the mixtures will Ag2SO4(s) precipitate?
For which of the mixtures will Ag2SO4(s) precipitate?  150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.20 M AgNO3(aq) 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.30 M AgNO3(aq) 150.0 mL of 0.10 M NazSO4(aq) and 5.0 mL of 0.40 M AgNO3(aq) 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.50 M AgNO3(aq)Which of the compounds is more soluble in an acidic solution than in pure water? Zn(OH) KCIO4 PbS CuBr CuCNA certain indicator, HA, has a Ka value of 1.6 x 10-7....
for which of the following mixtures will ag2so4(s) precipitate at 298 k
For which of the following mixtures will Ag2SO4(s) precipitate? 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.20 M AgNO3(aq) 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.30 M AgNO3(aq) 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.40 M AgNO3(aq) 150.0 mL of 0.10 M Na2SO4(aq) and 5.0 mL of 0.50 M AgNO3(aq)
Will Ag2SO4 precipitate when 100mL of 0.050M AgNO3 is mixed with 10mL of 5.0x10^-2 M Na2SO4?
Will Ag2SO4 precipitate when 100mL of 0.050M AgNO3 is mixed with 10mL of 5.0x10^-2 M Na2SO4?
For each of the following immiscible mixtures(A-D), which liquid is on top and which is on...
For each of the following immiscible mixtures(A-D), which liquid is on top and which is on bottom (Upper or Lower part of test tube) and which part will the solid be dissolved in? Explain why. A1: NaoH (aq) A2: Methylene chloride The solid is Salicylic acid B1: Hexane B2: Water The solid is: Naphthalene C1: Methylene chloride C2: Water The solid is: Fluorene D1: Diethyl ether D2: Water The solid is: Triphenylmethanol
Which of the following mixtures will be a buffer when dissolved in a liter of water?...
Which of the following mixtures will be a buffer when dissolved in a liter of water? 0.1 mol Ca(OH)2 and 0.3 mol HI 0.3 mol NaCl and 0.3 mol HCl 0.4 mol NH3 and 0.4 mol HCl 0.2 mol HBr and 0.1 mol NaOH 0.2 mol H3PO4 and 0.1 mol NaOH
Which of the following mixtures will be a buffer when dissolved in a liter of water?...
Which of the following mixtures will be a buffer when dissolved in a liter of water? A. 0.3 mol NaCl and 0.3 mol HCl B. 0.1 mol Ca(OH)2 and 0.3 mol HI C. 0.2 mol HBr and 0.1 mol NaOH D. 0.4 mol NH3 and 0.4 mol HCl E. 0.2 mol H3PO4 and 0.1 mol NaOH
When ammonia is added to a solution that has Cu(OH)2(s) precipitate in it, the precipitate dissolves....
When ammonia is added to a solution that has Cu(OH)2(s) precipitate in it, the precipitate dissolves. Use Le Châtelier’s principle to explain this.
Calculate the [H+] of the following mixtures.
Calculate the [H+] of the following mixtures. a.Dilution and Common Ion problem: 25 mL of 0.10 M HClO4 and 25 mL of 0.15 M HClO   b.Buffer problem: 25 mL of 0.025 M lactic acid (for which Ka = 1.37 × 10–4) and 25 mL of 0.015 M NaOH   c.Dilution and Weak Acid problem: 25 mL of 0.10 M ascorbic acid and 25 mL of water   d.Dilution and Conjugate Acid problem: 25.0 mL of 2.50 × 10-3 M...
Which one of the following compounds is soluble (will not precipitate) A. CuS B. AgS C....
Which one of the following compounds is soluble (will not precipitate) A. CuS B. AgS C. PbCl2 D. CuSO4 E. NH4Cl
Which one of the following compounds is soluble (will not precipitate) A. CuS B. AgS C....
Which one of the following compounds is soluble (will not precipitate) A. CuS B. AgS C. PbCl2 D. CuSO4 E. NH4Cl
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT