In: Statistics and Probability
There is a 0.9983 probability that a randomly selected 28-year-old male lives through the year. A life insurance company charges $191 for insuring that the male will live through the year. If the male does not survive the year, the policy pays out 90,000 as a death benefit. Complete parts (a) through (c) below.
a. From the perspective of the 28-year-old male, what are the monetary values corresponding to the two events of surviving the year and not surviving?
The value corresponding to surviving the year is $ _____?
The value corresponding to not surviving the year is $_____?
(Type integers or decimals. Do not round.)
If the 28-year-old male purchases the policy, what is his expected value?
The expected value is $______?
(Round to the nearest cent as needed.)
Can the insurance company expect to make a profit from many such policies? Why?
(yes or no ) ______?because the insurance company expects to make an average profit of $____? on every 28 year old male it insures for 1 year
(Round to the nearest cent as needed.)
(A) given that probability of surviving this year is 0.9983
value corresponding to surviving the year = -$191
value corresponding to not surviving the year = $90,000-$191 = $89,809
and probability of not suviving = 1- 0.9983 = 0.0017
this gives us
Expected value = 0.9983*(-$191) +0.0017*($89809) =
= -190.6753 + 152.6753
= -$38.00
Yes, car company will make $38 on an average on each policy
YES because the insurance company expects to make an average profit of $ 38.00 on every 28 year old male it insures for 1 year
$190.6753
0.0017*(90000-191) =