Question

In: Advanced Math

Given is a population of wolves (W) and rabbits (R). R[t+1] = R[t]+ g*R[t] * (1...

Given is a population of wolves (W) and rabbits (R). R[t+1] = R[t]+ g*R[t] * (1 – R[t]/K) - sR[t]W[t] W[t+1] = (1-u)W[t] + vR[t]W[t] Where the carrying capacity of rabbits is 1 million. The growth rate of rabbits is 10% a year and s is equal to 0.00001, v is 0.0000001, and u is equal to 0.01. How many wolves and how many rabbits exist in the equilibrium?

Solutions

Expert Solution

Answer:)

Inputting the givens in the equation, we get the following:

Suppose that the equilibrium value of the Wolf population and the Rabbit Population is W and R respectively, we will have that, at equilibrium :

Which simplifies down to:

For both these equations to hold simultaneously, we must have the following possibilities:

  • From the first equation, R = 0 which immediately gives from the second equation, that W = 0.
  • W = 0 and R = 1000000, from the second and first equation respectively.
  • from the second equation and

The equilibrium condition is then the case when (R,W) = (100000,9000) since the others are special cases of no rabbits or wolves, or an overabundance of rabbits and no wolves.


Related Solutions

A vector y  =  [R(t)  F(t)]T describes the populations of some rabbits R(t) and foxes F(t). The...
A vector y  =  [R(t)  F(t)]T describes the populations of some rabbits R(t) and foxes F(t). The populations obey the system of differential equations given by y′  =  Ay where A  =  [−2 15] [−2 9 ] The rabbit population begins at 6000. If we want the rabbit population to grow as a simple exponential of the form R(t)  =  R0e3t  with no other terms, how many foxes are needed at time t  =  0? (Note that the eigenvalues of A...
A vector y  =  [R(t)  F(t)]T describes the populations of some rabbits R(t) and foxes F(t). The...
A vector y  =  [R(t)  F(t)]T describes the populations of some rabbits R(t) and foxes F(t). The populations obey the system of differential equations given by y′  =  Ay where A  =  146 −1656 12 −136 The rabbit population begins at 84000. If we want the rabbit population to grow as a simple exponential of the form R(t)  =  R0e8t  with no other terms, how many foxes are needed at time t  =  0? (Note that the eigenvalues of A are...
The curve C is given by the parameterization ⃗r(t) = <−t , 1 − t^2> for...
The curve C is given by the parameterization ⃗r(t) = <−t , 1 − t^2> for −1 ≤ t ≤ 1. a) Choose any vector field F⃗ (x, y) = 〈some function , some other function〉 and setup the work integral of F⃗ over C. b)Choose any vector field G⃗(x,y) which has a potential function of the form φ(x,y)= x^3 + y^3 + some other stuff and compute the work done by G⃗ over C. Please use a somewhat basic...
(1 point) For the given position vectors r(t)r(t) compute the unit tangent vector T(t)T(t) for the...
(1 point) For the given position vectors r(t)r(t) compute the unit tangent vector T(t)T(t) for the given value of tt . A) Let r(t)=〈cos5t,sin5t〉 Then T(π4)〈 B) Let r(t)=〈t^2,t^3〉 Then T(4)=〈 C) Let r(t)=e^(5t)i+e^(−4t)j+tk Then T(−5)=
Given the vector function r(t)=〈√t , 1/(t-1) ,e^2t 〉 a) Find: ∫ r(t)dt b) Calculate the...
Given the vector function r(t)=〈√t , 1/(t-1) ,e^2t 〉 a) Find: ∫ r(t)dt b) Calculate the definite integral of r(t) for 2 ≤ t ≤ 3 can you please provide a Matlab code?
Given the following economy: Y = C(Y - T) + I(r) + G C(Y - T)...
Given the following economy: Y = C(Y - T) + I(r) + G C(Y - T) = a + b(Y - T) I(r) = c - dr M/P = L(r,Y) L(r,Y) = eY - fr i. Solve for Y as a function of r, the exogenous variables G and T, and the model's parameters a, b, c, and d. ii. Solve for r as a function of Y, M, P, and the parameters e and f. iii. Derive the aggregate...
1. Let V and W be vector spaces over R. a) Show that if T: V...
1. Let V and W be vector spaces over R. a) Show that if T: V → W and S : V → W are both linear transformations, then the map S + T : V → W given by (S + T)(v) = S(v) + T(v) is also a linear transformation. b) Show that if R: V → W is a linear transformation and λ ∈ R, then the map λR: V → W is given by (λR)(v) =...
Indicate the net charge for the peptide, C-H-A-V-E-C-A-R-R-I-S-T-H-E-G-R-E-A-T-E-S-T, at the given pH values: (a) pH 1,...
Indicate the net charge for the peptide, C-H-A-V-E-C-A-R-R-I-S-T-H-E-G-R-E-A-T-E-S-T, at the given pH values: (a) pH 1, net charge: (b) pH 5, net charge: (c) pH 8, net charge: (d) pH 14, net charge:
Ross is interested in an isolated population of 100 rabbits. He observed that 36 rabbits have...
Ross is interested in an isolated population of 100 rabbits. He observed that 36 rabbits have short ears; a recessive trait to long ears. After conducting a chi square analysis, Ross concludes that his observations are significantly different than his expected values. What is the null hypothesis that Ross is testing? A. Mendel's 3:1 ratio in the F2 offspring B. Mendel's 9:3:3:1 ratio in the F2 offspring C. Blending hypothesis D. Hardy-Weinberg Equilibrium E. None of the above. Ross is...
Consider the linear transformation T: R^4 to R^3 defined by T(x, y, z, w) = (x...
Consider the linear transformation T: R^4 to R^3 defined by T(x, y, z, w) = (x +2y +z, 2x +2y +3z +w, x +4y +2w) a) Find the dimension and basis for Im T (the image of T) b) Find the dimension and basis for Ker ( the Kernel of T) c) Does the vector v= (2,3,5) belong to Im T? Justify the answer. d) Does the vector v= (12,-3,-6,0) belong to Ker? Justify the answer.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT