Question

In: Finance

Suppose that the risk-free zero curve is flat at 3% per annum with continuous compounding and...

Suppose that the risk-free zero curve is flat at 3% per annum with continuous compounding and that defaults can occur at times 0.25, 0.75, 1.25, and 1.75 years in a two-year plain vanilla credit default swap with semiannual payments.  Suppose, further, that the recovery rate is 25% and the unconditional probabilities of default (as seen at time zero) are 1.5% at times 0.25 years and 0.75 years, and 2.0% at times 1.25 years and 1.75 years.  

What is the credit default swap spread?

What would the credit default spread be if the instrument were a binary credit default swap with a payoff of $1?

Solutions

Expert Solution

Let the payment rate be s.

Calculation of PV of expected regular payments:

1 2 3=2*0.5 4 5=3*4
Time (yrs) Prob of survival Expected Payment Discount Factor PV of Expected payments
0.5 0.985 0.4925 0.9852 0.485211
1 0.97 0.485 0.9707 0.4707895
1.5 0.95 0.475 0.9563 0.4542425
2 0.93 0.465 0.9422 0.438123
Total 1.8483s

Let notional value of principal be $1. Then, PV of expected payoffs is given as:

Time (yrs) Prob of Default Recovery Rate Expected Payoff Discount Factor PV of Expected Payoff
0.25 0.015 0.25 0.015 0.9926 0.014889
0.75 0.015 0.25 0.015 0.978 0.01467
1.25 0.02 0.25 0.02 0.9639 0.019278
1.75 0.02 0.25 0.02 0.9501 0.019002
Total 0.067839

Now PV of accrual payments is calculated as follows:

Time (yrs) Prob of Default Expected Accrual Payment Discount factor PV of Expected Accrual Payment
0.25 0.015 0.0025 0.9926 0.0024815
0.75 0.015 0.0025 0.978 0.002445
1.25 0.02 0.00375 0.9639 0.003614625
1.75 0.02 0.00375 0.9501 0.003562875
Total 0.012104s

The credit default swap spread is given by:

1.8483s+0.012104s= 0.067839

s= 0.0365 or 365 basis points.   


Related Solutions

Suppose that the risk-free zero curve is flat at 6% per annum with continuous compounding and...
Suppose that the risk-free zero curve is flat at 6% per annum with continuous compounding and that defaults can occur at times 0.25 years, 0.75 years, 1.25 years, and 1.75 years in a two-year plain vanilla credit default swap with semiannual payments. Suppose that the recovery rate is 20% and the unconditional probabilities of default (as seen at time zero) are 1% at times 0.25 years and 0.75 years, and 1.5% at times 1.25 years and1.75 years. What is the...
"Suppose that the risk-free zero curve is flat at 7% per annum with continuous compounding and...
"Suppose that the risk-free zero curve is flat at 7% per annum with continuous compounding and that defaults can occur halfway through each year in a new five-year credit default swap. Suppose that the recovery rate is 30% and the hazard rate is 3%. a. Estimate the credit default swap spread. Assume payments are made annually. b. What is the value of the swap per dollar of notional principal to the protection buyer if the credit default swap spread is...
Suppose that the risk-free zero curve is flat at 6% per annum with continuous compounding and...
Suppose that the risk-free zero curve is flat at 6% per annum with continuous compounding and that defaults can occur at times 0.25 years, 0.75 years, 1.25 years, and 1.75 years in a two-year plain vanilla credit default swap with semi-annual payments. Suppose that the recovery rate is 20% and the unconditional probabilities of default (as seen at time zero) are 1% at times 0.25 years and 0.75 years, and 1.5% at times 1.25 years and 1.75 years. i) Estimate...
Risk-free zero rate is 4% per annum with continuous compounding for all maturities and defaultsonly occur...
Risk-free zero rate is 4% per annum with continuous compounding for all maturities and defaultsonly occur at times 0.25 years, 0.75 years, 1.25 years, and 1.75 years in a two-year credit default swap with semiannual payments. The probabilities of default are 0.8%, 1%, 1.2% and 1.5% in the first, second, third and forth six months of the CDS’s lifetime. The recovery rate is 60%. Calculate the CDS spread. Do not need in binary CDS
Suppose that the risk-free zero curve is flat at 7% per annum with continuous compounding and that defaults can occur half way through each year in a new five-year credit default swap
Suppose that the risk-free zero curve is flat at 7% per annum with continuous compounding and that defaults can occur half way through each year in a new five-year credit default swap. Suppose that the recovery rate is 30% and the default probabilities each year conditional on no earlier default is 3% Estimate the credit default swap spread? Assume payments are made annually. What is the value of the swap in Problem 4.1 per dollar of notional principal to the...
spot price: 66 strike price 68 risk-free interest rate is 6% per annum with continuous compounding,...
spot price: 66 strike price 68 risk-free interest rate is 6% per annum with continuous compounding, please undertake option valuations and answer related questions according to following instructions: Binomial trees: Additionally, assume that over each of the next two four-month periods, the share price is expected to go up by 11% or down by 10%. Use a two-step binomial tree to calculate the value of an eight-month European call option using risk-neutral valuation. Use a two-step binomial tree to calculate...
spot price: 66 strike price 68 risk-free interest rate is 6% per annum with continuous compounding,...
spot price: 66 strike price 68 risk-free interest rate is 6% per annum with continuous compounding, please undertake option valuations and answer related questions according to following instructions: Binomial trees: Additionally, assume that over each of the next two four-month periods, the share price is expected to go up by 11% or down by 10%. a. Use a two-step binomial tree to calculate the value of an eight-month European call option using the no-arbitrage approach. b. Use a two-step binomial...
Suppose that zero interest rates with continuous compounding are as follows: Maturity( years) Rate (% per...
Suppose that zero interest rates with continuous compounding are as follows: Maturity( years) Rate (% per annum) 1 4.0 2 4.3 3 4.5 4 4.7 5 5.0 Calculate forward interest rates for the second, third, fourth, and fifth years.
An interest rate is 6.75% per annum with continuous compounding. What is the equivalent rate with...
An interest rate is 6.75% per annum with continuous compounding. What is the equivalent rate with semiannual compounding?
An interest rate is 9.50% per annum with continuous compounding. What is the equivalent rate with...
An interest rate is 9.50% per annum with continuous compounding. What is the equivalent rate with semiannual compounding? (Answer in percent with two decimals. Example 5.25)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT